Equació diofàntica

equació algebraica de dues o més incògnites

Una equació diofàntica és una equació per a la qual només es permeten solucions enteres. El seu nom fa referència al matemàtic grec Diofant d'Alexandria, un dels primers a estudiar aquest tipus de problemes.

A més del problema de trobar les solucions d'una equació diofàntica particular, no és evident la mateixa existència de les solucions. Existeix un algorisme general per a trobar les solucions d'una equació diofàntica de primer ordre, però no per a ordres superiors. Aquest problema general ha estat sense obtenir una resposta definitiva durant molts segles i David Hilbert l'inclogué com un dels seus famosos 23 problemes. El 1970, Yuri Matiyasevich demostrà finalment que és impossible obtenir una solució general per a una equació diofàntica d'ordre qualsevol.

Equació diofàntica de primer ordre modifica

És una equació de la forma  , i només té solució si   (és a dir, si el màxim comú divisor de   i   també divideix  ).

Resolució general modifica

Les solucions d'aquesta equació són:

 
 

en què   representen   i és  .   i   són les solucions enteres de l'equació  .

Exemple modifica

A continuació, resoldrem l'equació  . En primer lloc, s'ha de comprovar que té solució: donat que el màxim comú divisor de 27 i 51 és 3, i 3 divideix 111, podem afirmar que sí que en té. Ara, resolent la identitat de Bézout  , d'on trobem una solució immediata que és  . Per tant, la solució general serà:

 
 

Alguns exemples modifica

  • ax + by = c: s'anomena identitat de Bézout. Aquestes equacions es poden resoldre completament i la primera solució coneguda es deu al matemàtic indi Brahmagupta.
  • xn + yn = zn: per a n = 2 hi ha infinites solucions (x,y,z), les tripletes pitagòriques. Per a valors superiors de n, l'últim teorema de Fermat n'assegura la inexistència de solucions.
  • x² − n y² = 1: anomenada equació de Pell. Si n no és un quadrat perfecte, té infinites solucions que són una bona aproximació racional a l'arrel quadrada de n.
  •  , on   i  : s'anomenen equacions de Thue i, en general, tenen solució.

Referències modifica

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Equació diofàntica

Castellet, Manuel; Llerena, Irene. «1». A: Àlgebra Lineal i Geometria. 4a ed.. ISBN 84-7488-943-X. 

Vegeu també modifica