Taula de derivades

article de llista de Wikimedia

En el procés de càlcul de derivades o diferenciació, es pot obtenir la derivada de qualsevol funció elemental emprant les regles de derivació i la taula de derivades de les funcions base a partir de les quals es construeixen la resta de funcions elementals.

Les derivades d'aquestes funcions base s'obtenen normalment a partir de la definició de derivada, aplicant les propietats de cada funció i amb les tècniques de càlcul de límits.

Taula de derivades modifica

Funció F: primitiva de f Funció f: derivada de F
Funcions elementals
   
   
   
   
   
   
   
   
   
Funcions trigonomètriques
   
   
   
   
   
   
   
   
   
Funcions hiperbòliques
   
   
   
   
   
   
   
   
   
   
   
   

Funcions especials modifica

Funció Gamma

   

Funció zeta de Riemann

 

 

Demostracions modifica

Derivada d'una constant modifica

En el cas de la funció constant la seva gràfica és una recta horitzontal i per tant té pendent zero a tot arreu, aquest resultat també s'obté directament en aplicar la definició de derivada a la funció constant: f(x)=c.

 .

Derivada d'una potència entera modifica

En cas que  , s'obté:

 .

Aplicant la fórmula del binomi de Newton, agrupant els termes que tenen h elevada a una potència superior a 2 i traient h² factor comú d'aquests termes, resulta:

 

A partir d'aquí, operant s'obté:

 .

Derivada d'una potència real modifica

Pel càlcul de la derivada d'una potència real primer es transforma l'expressió:

 

Llavors s'aplica la regla de la cadena:

 

Amb

 

D'aquí, operant, i tenint en compe la derivada de la funció exponencial (vegeu més endavant) resulta:

 

Aquesta expressió, és formalment idèntica al cas de la potència entera.

Pel cas particular de   resulta:

 

Per tant:  

Derivada de la funció logaritme modifica

Sigui  , aleshores es defineix la funció logaritmica com  , aplicant la definició de derivada i ficant els termes dins de la funció logaritme s'obté:

 

Aquesta expressió es pot transformar de la següent manera:

 

Però quant   tendeix a zero   tendeix a infinit (si  , cosa que hem imposat al principi), per tant el límit es pot calcular tenint en compte la definició del nombre e:

 

Per tant la derivada de la funció logaritme és:

 

O cosa que és el mateix:

 

tenint en compte que:

 

Com es pot comprovar plantejant:

 

En el cas particular del logaritme natural:

 

Si en comptes de la funció   definim la funció   (de la mateixa manera que abans imposàvem que  , ara s'ha de complir que  )

Podem aplicar la regla de la cadena per calcular  :

 

I, en concret si  

 

Derivada de la funció exponencial modifica

Com que la funció exponencial és la inversa de la funció logaritme, s'aplica la regla de la derivada de la funció inversa:

 

Amb:

 

Substituint i operant resulta:

 

O cosa que és el mateix:

 

Pel cas particular de què   resulta:

 

De nou, aplicant la regla de la cadena podem trobar la derivada de la funció  

 

I, en concret si  

 

Derivada de la funció   modifica

Si   i   són funcions derivables i   podem resumir totes les derivades anteriors en una sola derivada utilitzant només les derivades de les funcions   i  , la derivada de la funció  

Tenint en compte que podem escriure   com  , aleshores

 

Veiem que efectivament aquesta derivada ens condueix a:

 
 

Cal notar que la primera expressió només està definida quan   i la segona només ho està quan  . Tot i així, pels valors de   pels quals podem definir   (valors enters o racionals amb denominador senar), si   podem escriure  

 

Generalitzant així la equació per a tot valor de  .

Les altres expressions es poden trobar de manera similar o aplicant la derivada de la funció inversa.

Derivada de les funcions trigonomètriques modifica

Les derivades de les funcions sinus i cosinus es troben a partir de la definició de derivada, aplicant les identitats trigonomètriques de la suma de raons trigonomètriques

 
 

i les identitats trigonomètriques

 
 

Un cop s'han trobat les derivades del sinus i del cosinus la derivada de la tangent es calcula aplicant la regla del quocient a la identitat trigonomètrica:

 

A partir d'aqui es troben les derivades de les funcions cotangent, secant i cosecant aplicant la Regla de la raó inversa d'una funció a les identitats:

 

Els detalls de tot el procés es troben a l'article Derivació de les funcions trigonomètriques

Derivada de les funcions inverses de les funcions trigonomètriques modifica

La derivada de les inverses de les funcions trigonomètriques es calculen aplicant la regla de la funció inversa a cada una de les funcions trigonomètriques i simplificant el resultat.

Derivada de les funcions hiperbòliques modifica

Les derivades de les funcions hiperbòliques s'obtenen a partir de les seves definicions emprant la derivada de la funció  

  modifica

 

  modifica

 

  modifica

 

O, utilitzant la relació  

 

Per les funcions hiperbòliques inverses fem servir la regla de la funció inversa.

  modifica

Denotem  , la regla de la funció inversa ens diu que

 
 

Com que  

 

  modifica

Sigui  , la regla de la funció inversa ens diu que

 
 

Com que  

 

  modifica

Sigui  , la regla de la funció inversa ens diu que

 
 

Vegeu també modifica

Referències modifica

http://www.edicionsupc.cat/virtuals/caplln/ME01007X.htm#[Enllaç no actiu]

Enllaços externs modifica