Distribució multinomial

En probabilitat i estadística la distribució multinomial és una extensió de la distribució binomial quan en un experiment aleatori hi ha més de dos resultats possibles. Concretament, fem repeticions d'un experiment que té resultats diferents possibles i comptem el nombre de vegades que es produeix cadascun dels resultats possibles. Entre les nombroses aplicacions d'aquesta distribució en Estadística destaca el test de Pearson de la .

Infotaula distribució de probabilitatDistribució multinomial
Tipusdistribució de probabilitat discreta i distribució conjunta Modifica el valor a Wikidata
Paràmetres nombre de repeticions,
, amb , probabilitats dels diferents resultats
Suport, amb
Esperança matemàtica
Variància
Entropia
FGM
FC
FGP
MathworldMultinomialDistribution Modifica el valor a Wikidata

Definició

modifica

Considerem un experiment aleatori que pot tenir   resultats diferents, que designarem per  , mútuament excloents, amb probabilitats respectives   tals que  . Fem   repeticions independents i denotem per   el nombre de vegades que obtenim el resultat  , per   el nombre de vegades que obtenim el resultat  , i així successivament. Aleshores la probabilitat d'obtenir   vegades el resultat  ,   vegades el resultat  , etc., amb  , és

 
Cal recordar que a l'expressió de l'esquerra, les comes indiquen interseccions, així,
 
Es diu que el vector   segueix una distribució multinomial[1][2] de paràmetres  , i s'escriu  . Cal notar que cada component   té una distribució binomial de paràmetres   i  ,  . De fet, una distribució multinomial és una extensió de la distribució binomial quan hi ha més de dos resultats possibles.

Exemple. Tenim una urna amb 4 boles blanques, 3 vermelles i 3 grogues. Traiem   boles amb reemplaçament, és a dir, traiem una bola, anotem el color, la retornem a l'urna, en traiem una altra, la retornem, i així successivament fins que hem tret quatre boles. Designem per:

 : nombre de boles blanques que traiem.
 : nombre de boles vermelles que traiem.
 : el nombre de boles grogues que traiem.

Tenim que  ,   i  . Llavors, la probabilitat de treure 1 bola blanca, 1 vermella i 2 grogues és

 
Coeficients multinomials. Recordem que
 
s'anomena coeficient multinomial.[3] Aquest coeficient intervé en generalització de la fórmula del binomi de Newton quan hi ha més de dos sumands:
 
on la suma es fa sobre totes les  -ples   tals que  . La fórmula (*) intervé a l'estudi de moltes propietats d'aquesta distribució.

Comentari sobre la nomenclatura. Atès que   i que els paràmetres són redundants, ja que  , alguns autors, per exemple Wilks,[4] proposen una notació alternativa: diuen que un vector   segueix una distribució multinomial de paràmetres  , on  , si la funció de probabilitat és

 
on  . Seber,[5] quan  , diu que és la forma singular de la distribució multinomial, mentre que si   és la formulació no singular. La notació que utilitzem en aquest article és la més habitual, però és recomanable comprovar quina definició de distribució multinomial s'està utilitzant.

Propietats

modifica

Esperança, variància i covariància

modifica

L'esperança de cada component és

 
La variància és
 
Ambdues propietats es dedueixen del fet que   té una distribució binomial  .

Per a  , la covariància és (vegeu la demostració després de la funció característica)

 
D'aquí resulta que el coeficient de correlació entre   i   és
 
que és independent de  .

La matriu de variàncies-covariàncies és  , on

 
que té rang  .

Escriptura compacta de la matriu  

La matriu   es pot escriure de la següent forma:

 
on   (en aquest article escriurem tots els vectors en fila),   és una matriu diagonal amb els elements  , i per una matriu (o vector)  , denotarem per   la seva transposada.

Funció característica i funció generatriu de moments

modifica

La funció característica del vector   és

 
La funció generatriu de moments és
 
La funció generatriu de probabilitats és
 


Caràcter reproductiu

modifica

Siguin   i   independents. Aleshores  . Es diu que la distribució multinomial és reproductiva respecte de  .[4] També s'escriu

 
on   designa la convolució de probabilitats.

Comportament asimptòtic

modifica

La distribució multinomial és asimptòticament normal

modifica

Com a conseqüència del teorema central del límit multidimensional, si considerem una successió  ,  , aleshores

 
on  ,   és la matriu que hem introduït abans i   és una distribució normal multidimensional centrada amb matriu de variàncies covariàncies  . Normalment, aquesta propietat s'escriu en components suprimint el subíndex   de les variables  :
 

La distribució χ² entra en escena

modifica

Tenim la convergència:

 
on   és una distribució  -quadrat amb   graus de llibertat. Aquest resultat és molt important ja que en ell reposen el test de la  de Pearson i va ser demostrar per Pearson l'any 1900.[9][10]

Relació amb la distribució de Poisson

modifica

Siguin   variables independents, amb distribucions de Poisson  . Aleshores la distribució de   condicionada a   és una distribució multinomial   on  [18].

Vegeu també

modifica

Prova de la   de Pearson

Referències

modifica
  1. Johnson, Kotz i Balakrishnan, 1997, Capítol 35.
  2. Forbes et al., 2010, p. 135-136.
  3. Olver, F.W.J; Lozier, D.W.; Boisvert, R. F.; Clark, C.W.. NIST handbook of mathematical functions. Cambridge: Cambridge University Press, 2010, p. Fórmula 26.4.9. ISBN 978-0-521-19225-5. 
  4. 4,0 4,1 Wilks, S. S.. Mathematical statistics. Nova York: Wiley, 1962, p. 139. ISBN 0-471-94644-3. 
  5. Seber, G. A. F.. Statistical models for proportions and probabilities, 2013, pp. 28 i 31. ISBN 978-3-642-39041-8. 
  6. 6,0 6,1 Seber, G. A. F.. A matrix handbook for statisticians. Hoboken, N.J.: Wiley-Interscience, 2008, p. 428, item 20.3. ISBN 978-0-470-22678-0. 
  7. Franklin A., Graybill. Matrices with applications in statistics, 1983, p. 203. ISBN 0-534-98038-4. 
  8. 8,0 8,1 Sato, Ken-iti. Lévy processes and infinitely divisible distributions. Cambridge, U.K.: Cambridge University Press, 1999, p. 9. ISBN 0-521-55302-4. 
  9. Pearson, Karl «On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling». Philosophical Magazine, 50, 302, 1900, pàg. 157–175. DOI: 10.1080/14786440009463897.
  10. Vegeu l'interessant treball de W. G. Cochran on explica de forma molt clara l'article de Pearson: Cochran, William G. «The $\chi^2$ Test of Goodness of Fit». The Annals of Mathematical Statistics, 23, 3, 1952-09, pàg. 315–345. DOI: 10.1214/aoms/1177729380. ISSN: 0003-4851.
  11. 11,0 11,1 Serfling, Robert J. Approximation theorems of mathematical statistics. Nova York: Wiley, 2002, p. 25. ISBN 0-471-21927-4. 
  12. Serfling, Robert J. Approximation theorems of mathematical statistics. Nova York: Wiley, 2002, p. 130. ISBN 0-471-21927-4. 
  13. Seber, G. A. F.. Statistical models for proportions and probabilities, 2013, p. 30-31. ISBN 978-3-642-39041-8. 
  14. És un resultat general sobre matrius amb estructura, vegeu: Franklin A., Graybill. Matrices with applications in statistics, 1983, p. 187. ISBN 0-534-98038-4. 
  15. tots aquests càlculs es poden simplificar escrivint de manera compacta totes les matrius, tal com hem fet abans amb la matriu   a l'apartat de Propietats
  16. Per definició, una matriu definida positiva és simètrica
  17. Totes les propietats de les matrius definides positives que utilitzem es troben a Seber, G. A. F.. A matrix handbook for statisticians. Hoboken, N.J.: Wiley-Interscience, 2008, p. 220-221. ISBN 978-0-470-22678-0. 
  18. Johnson, Kotz i Balakrishnan, 1997, p. 33.

Bibliografia

modifica