Diferència entre revisions de la pàgina «Propietat commutativa»

→‎Teoria de conjunts: afegint referència ordinals
(→‎Teoria de conjunts: afegint referència ordinals)
:<math>A \cup B = B \cup A, \quad A \cap B = B \cap A</math>.
 
La suma i el producte de [[cardinal]]s són operacions commutatives,{{sfn|Bourbaki|1970.|p= E&nbsp;III.26.}} però no ho són en general la suma i el producte d'[[ordinal]]s transfinits.{{sfn|Cantor|2006|p=131 (cap.14).}} Si <math>\mathfrak{a}</math> i <math>\mathfrak{b}</math> són dos cardinals o dos ordinals finits, aleshores
:<math>\mathfrak{a} + \mathfrak{b} = \mathfrak{b} + \mathfrak{a}, \quad \mathfrak{a} \mathfrak{b} = \mathfrak{b} \mathfrak{a}</math>.
Això implica en particular que la suma i el producte de nombres naturals (és a dir, els cardinals [[conjunt finit|conjunts finits]], ordinals i cardinals) són commutatives. La commutativitat de la suma és conseqüència de la de la unió de conjunts. La commutativitat del producte és conseqüència del fet que un producte cartesià de conjunts té el mateix nombre d'elements independentment de com es realitzi aquest producte.
 
=== Altres operacions algebraiques ===
10.659

modificacions