Diferència entre revisions de la pàgina «Funció bijectiva»

29 octets eliminats ,  fa 12 anys
cap resum d'edició
En [[matemàtiques]], una '''bijecció''', o una '''funció bijectiva''' és una [[funció (matemàtiques)|funció]] ''f'' de un [[conjunt]] ''X'' a un conjunt ''Y'' amb la propietat de que, per a cada ''y'' de ''Y'', hi ha exactament un ''x'' de ''X'' tal que <br> ''f''(''x'') = ''y''.
 
O bé, ''f'' es bijectiva si és una correspondència tal que totstotes elsles elements del conjunt origenimatges tenen imatgeantiimatge, és a dir és una ''' ([[funció injectiva]]) i al mateix temps tots els elements del conjunt imatge són imatge d’algund'algun element del conjunt origen és a dir és una ([[funció suprajectiva]]).
 
Per exemple, consideris la funció successor, definida a partir del conjunt dels [[Nombre enter|Enters]] de <math>\Z</math> en <math>\Z</math>, de forma que a cada enter ''x'' li fa correspondre l’enterl'enter successor(''x'') = x + 1. Un altre exemple pot ser la funció sumdif que a cada parella (''x'',''y'') de nombres reals els associa a la parella sumdif(''x'',''y'') = (''x''&nbsp;+&nbsp;''y'', ''x''&nbsp;&minus;&nbsp;''y'').
 
De una funció bijectiva també se’nse'n diu una '''[[permutació]]'''. Tot i que això es fa servir més habitualment quant ''X'' = ''Y''. El conjunt de totes les bijeccions de ''X'' en ''Y'' es denota com a ''X''<math>{}\leftrightarrow{}</math>''Y''.
 
Les funcions bijectives juguen un paper fonamental en moltes àrees de les matempatiques, per exemple en la definició de [[isomorfisme]]s (i conceptes relacionats com els [[homeomorfisme]]s i els [[difeomorfisme]]s), [[grup de permutacions]], [[aplicació projectiva]],i molts altres.
 
==Bijeccions i cardinalitat==
Si ''X'' i ''Y'' són conjunts [[conjunt finit|finits]], llavors hi ha una bijecció entre els dos conjunts ''X'' i ''Y'' [[si i només si]] ''X'' i ''Y'' tenen el mateix nombre d’elementsd'elements. De fet, en la [[teoria axiomàtica de conjunts]], això es pren com a la autèntica ''definició'' de "mateix nombre d’elementsd'elements", i generalitzant aquesta definició al cas de conjunts [[infinit]]s porta al concepte de [[nombre cardinal]], una forma de distingir les diferents grandàries dels [[conjunts infinits]].
 
==Exemples i contraexemples==
== Propietats ==
* Una funció ''f'' de la [[línia real]] '''R''' en '''R''' és bijectiva si i només si la seva gràfica és intersecada per qualsevol línia horitzontal exactament en un únic punt.
* Si ''X'' és un conjunt, llavors les funcions bijectives de ''X'' en si mateix, juntament amb l’operaciól'operació de composició de funcions (<sup><small>o</small></sup>), formen un [[grup (matemàtiques)|grup]], el [[grup simètric]] de ''X'', el qual es denota com a S(''X''), ''S''<sub>''X''</sub>, o ''X''! (la última notació es llegeix "''X'' [[factorial]]").
* Per a un subconjunt ''A'' of del domini i un subconjunt ''B'' del codomini es té:
:|''f''(''A'')| = |''A''| i |''f''<sup>&minus;1</sup>(''B'')| = |''B''|.
:# ''f'' is suprajectiva.
:# ''f'' is injectiva.
*Com a mínim per a qualsevol conjunt finit ''S'', hi ha una bijecció entre el conjunt de totes les possibles [[ordenacions totals]] dels seus elements i el conjunt de totes les bijeccions de ''S'' en ''S''. Això és el mateix que dir que el nombre de [[permutacions]] (un altre nom per a referir-se a les bijeccions) dels elements de ''S'' és el mateix que el nombre de ordenacions totals d’aquestd'aquest conjunt --anomenat, ''n!''.
 
 
Usuari anònim