Taula d'integrals: diferència entre les revisions

Contingut suprimit Contingut afegit
Línia 113:
 
:<math>\int_a^b{f(x)\,dx} = (b - a) \sum\limits_{n = 1}^\infty {\sum\limits_{m = 1}^{2^n - 1} {\left( { - 1} \right)^{m + 1} } } 2^{ - n} f(a + m\left( {b - a} \right)2^{-n} )</math>
 
: <math>
\int_0^1 e^{x\cdot \ln a + (1-x)\cdot \ln b}\;\mathrm{d}x =
\int_0^1 \left(\frac{a}{b}\right)^{x}\cdot b\;\mathrm{d}x =
\int_0^1 a^{x}\cdot b^{1-x}\;\mathrm{d}x =
\frac{a-b}{\ln a - \ln b}</math> per <math>a > 0,\ b > 0,\ a \ne b</math>, que és la [[mitjana logarítmica]]
 
:<math>\int_{0}^{\infty} e^{-ax}\,\mathrm{d}x=\frac{1}{a}</math>
 
:<math>\int_{0}^{\infty} e^{-ax^2}\,\mathrm{d}x=\frac{1}{2} \sqrt{\pi \over a} \quad (a>0)</math> (la [[integral de Gauß]])
 
:<math>\int_{-\infty}^{\infty} e^{-ax^2}\,\mathrm{d}x=\sqrt{\pi \over a} \quad (a>0)</math>
 
:<math>\int_{-\infty}^{\infty} e^{-ax^2} e^{2bx}\,\mathrm{d}x=\sqrt{\frac{\pi}{a}}e^{\frac{b^2}{a}} \quad (a>0)</math>
 
:<math>\int_{-\infty}^{\infty} x e^{-a(x-b)^2}\,\mathrm{d}x=b \sqrt{\pi \over a} \quad (a>0)</math>
 
:<math>\int_{-\infty}^{\infty} x^2 e^{-ax^2}\,\mathrm{d}x=\frac{1}{2} \sqrt{\pi \over a^3} \quad (a>0)</math>
 
:<math>\int_{0}^{\infty} x^{n} e^{-ax^2}\,\mathrm{d}x =
\begin{cases}
\frac{1}{2}\Gamma \left(\frac{n+1}{2}\right)/a^{\frac{n+1}{2}} & (n>-1,a>0) \\
\frac{(2k-1)!!}{2^{k+1}a^k}\sqrt{\frac{\pi}{a}} & (n=2k, k \;\text{integer}, a>0) \\
\frac{k!}{2a^{k+1}} & (n=2k+1,k \;\text{integer}, a>0)
\end{cases} </math> (!! és el [[Doble factorial]])
 
:<math>\int_{0}^{\infty} x^n e^{-ax}\,\mathrm{d}x =
\begin{cases}
\frac{\Gamma(n+1)}{a^{n+1}} & (n>-1,a>0) \\
\frac{n!}{a^{n+1}} & (n=0,1,2,\ldots,a>0) \\
\end{cases}</math>
 
:<math>\int_{0}^{\infty} e^{-ax}\sin bx \, \mathrm{d}x = \frac{b}{a^2+b^2} \quad (a>0)</math>
 
:<math>\int_{0}^{\infty} e^{-ax}\cos bx \, \mathrm{d}x = \frac{a}{a^2+b^2} \quad (a>0)</math>
 
:<math>\int_{0}^{\infty} xe^{-ax}\sin bx \, \mathrm{d}x = \frac{2ab}{(a^2+b^2)^2} \quad (a>0)</math>
 
:<math>\int_{0}^{\infty} xe^{-ax}\cos bx \, \mathrm{d}x = \frac{a^2-b^2}{(a^2+b^2)^2} \quad (a>0)</math>
 
 
=== El “somni de sophomore” ===