Diferència entre revisions de la pàgina «Binomi de Newton»

2.085 bytes afegits ,  fa 3 anys
(Afegida Funció Binomial)
{{MF|data=febrer de 2014}}
 
El '''[[Binomi]] de [[Isaac Newton|Newton]]''' <ref>{{Ref-llibre|cognom=Rade, Lennart; Westergren, Bertil|nom=|títol=Mathematics Handbook for Science and Engineering|url=http://www.springer.com/gp/book/9783540211419|edició=|llengua=|data=|editorial=Springer|lloc=|pàgines=|isbn=ISBN 978-3-662-08549-3}}</ref><ref>{{Ref-llibre|cognom=Bronshtein, I.; Semendiaev, K.|nom=|títol=Manual de matemáticas para ingenieros y estudiantes|url=|edició=|llengua=Castellà|data=1977|editorial=MIR|lloc=Moscú|pàgines=|isbn=}}</ref> o '''teorema del binomi''' és una fórmula que serveix per a calcular la potència <math>n</math> d'un '''binomi''' <math>(a+b)
</math>. És per tant una generalització de les fórmules elementals <math>(a+b)^2=a^2+2ab+b^2</math> i <math>(a+b)^3=a^3+3a^2b+3ab^2+b^3</math>. Aquestes dues formen part del que s'anomenen [[Identitat notable|Identitats notables]], i la primera d'elles admet una demostració gràfica elemental en termes d'àrees de quadrats i rectangles. El cas general, que és pròpiament el Binomi de Newton, utilitza nombres [[combinatòria|combinatoris]], i diu:
 
== Demostració ==
=== Raonament combinatori ===
Tenint en compte que en l'expressió <math>ax=(xa+yb)^n</math> ''a'' es pot escriure com el producte de <math>n</math> binomis, <math>ax=s_1s_2 \cdots s_n</math>, on cada <math>s_i=xa+yb</math>. El desenvolupament de ''a''<math>x</math> és la suma de tots els productes formats agafant un terme – ja sigui ''x''<math>a</math> o ''y''<math>b</math> – de cada <math>s_i</math>. Per exemple, el terme <math>xa^n</math> en el desenvolupament de ''a''<math>x</math> s'obté seleccionant ''x''<math>a</math> en cada <math>s_i</math>.
 
El coeficient que multiplica cada terme del desenvolupament de ''a''<math>x</math> queda determinat per la quantitat de formes diferents que hi ha per triar termes <math>s_i</math> tals que el seu producte és de la mateixa forma que el terme (excloent el coeficient). En el cas de <math>t=xa^{n-1}yb</math>., ''<math>t''</math> es pot formar a ''a'' a base d'agafar ''y''<math>b</math> d'un dels <math>s_i</math> i ''x''<math>a</math> de tota la resta. Hi ha ''<math>n''</math> formes de seleccionar un <math>s_i</math> per obtenir la ''y''<math>b</math>; per tant ''<math>t''</math> s'obté de ''<math>n''</math> formes diferents en el desenvolupament de ''a''<math>x</math>, i per tant el seu coeficient és ''<math>n''</math>. En general, per <math>t=xa^{n-k}yb^k</math>, hi ha
 
:<math>{n \choose k}</math>
 
Formes diferents de seleccionar els <math>s_i</math> per obtenir els ''y''<math>b</math>s (ja que ''<math>k''</math> ''y''<math>b</math>s se seleccionen a partir de ''<math>n''</math> <math>s_i</math>), i per tant aquest ha de ser el coeficient per ''<math>t''</math>.
 
=== Demostració algebraica ===
 
::<math> = \sum_{k=0}^{m+1} { m+1 \choose k } a^{m+1-k}b^k</math>
::
::
 
== La funció binomial ==
 
== Observacions ==
En les demostracions anteriors es veu que és essencial la propietat commutativa <math>ab=ba</math>. Si, per exemple, <math>A</math> i <math>B</math> fossin dues matrius que no commutessin, aleshores tindríem simplement <math>(A+B)^2=A^2+Ab+BA+B^2</math> o <math>(A+B)^3=A^3+A^2B+ABA+BA^2+AB^2+BAB+B^2A+B^3</math>.
 
El Binomi de Newton és molt útil per al càlcul mental. Per exemple, calcular <math>21^4</math> és molt fàcil si s'escriu com <math>(20+1)^4</math>.
 
Observi's que la suma dels coeficients binomials del binomi de grau <math>n</math> és igual a <math>2^n</math>i la suma dels coeficients que jauen en els llocs senars coincideix amb la suma dels que jauen en els llocs parells.
 
El terme <math>{n \choose k}a^{n-k}\,b^{k}</math> quan <math>a=p</math> i <math>b=1-p</math> és la probabilitat que el nombre d'èxits sigui exactament <math>k</math> en una seqüència de <math>n</math> assaigs independents amb una probabilitat fixa <math>p</math> d'ocurrència de l'èxit entre els assaigs. A aquesta distribució de probabilitat se li dona el nom de [[distribució binomial]].
 
== Història ==
Segons <ref>{{Ref-llibre|cognom=Suzuki|nom=Jeff|títol=Mathematics in Historical Context|url=|edició=|llengua=Anglès|data=|editorial=The Mathematical Association of America|lloc=|pàgines=|isbn=978-0-88385-570-6}}</ref>, p. 226, la primera aparició escrita del teorema del binomi va ser en una carta de Newton a Henry Oldenburg, Secretari de la Royal Society, el 1676. A la mateixa referència, p. 233, es diu que Newton va usar el binomi i la distribució binomial el 1693 per a resoldre un problema sorgit en un joc de daus, per encàrrec de la casa reial de Guillem III:
 
== Vegeu també ==
134

modificacions