Diferència entre revisions de la pàgina «Binomi de Newton»

11 octets eliminats ,  fa 3 anys
cap resum d'edició
(Aquest canvi ha estat només de puntuació. El canvi anterior ha estat més important: canvis a la notació (escriure (a+b) en lloc de (x+y) en una de les demostracions, introduis diverses observacions i una nota històrica.)
 
El '''[[Binomi]] de [[Isaac Newton|Newton]]''' <ref>{{Ref-llibre|cognom=Rade, Lennart; Westergren, Bertil|nom=|títol=Mathematics Handbook for Science and Engineering|url=http://www.springer.com/gp/book/9783540211419|edició=|llengua=|data=|editorial=Springer|lloc=|pàgines=|isbn=ISBN 978-3-662-08549-3}}</ref><ref>{{Ref-llibre|cognom=Bronshtein, I.; Semendiaev, K.|nom=|títol=Manual de matemáticas para ingenieros y estudiantes|url=|edició=|llengua=Castellà|data=1977|editorial=MIR|lloc=Moscú|pàgines=|isbn=}}</ref> o '''teorema del binomi''' és una fórmula que serveix per a calcular la potència <math>n</math> d'un '''binomi''' <math>(a+b)
</math>. És per tant una generalització de les fórmules elementals <math>(a+b)^2=a^2+2ab+b^2</math> i <math>(a+b)^3=a^3+3a^2b+3ab^2+b^3</math>. Aquestes dues formen part del que s'anomenen [[Identitat notable|Identitats notables]], i la primera d'elles admetadmeten una demostració gràfica elemental en termes d'àrees de quadrats i rectanglesparal·lepípeds. El cas general, que és pròpiament el Binomi de Newton, utilitza nombres [[combinatòria|combinatoris]], i diu:
 
<math>{(a+b)}^{n}=\sum_{k=0}^{n} {n \choose k}a^{n-k}\,b^{k}</math>,
Usuari anònim