Quadrat perfecte: diferència entre les revisions

1.340 bytes afegits ,  fa 4 anys
m
Revertides les edicions de 2A01:C50E:2F3E:4200:9595:A0A:C32C:CFBE. Si penseu que és un error, deixeu un missatge a la meva discussió.
(Fácilmente)
Etiquetes: Edita des de mòbil Edició web per a mòbils
m (Revertides les edicions de 2A01:C50E:2F3E:4200:9595:A0A:C32C:CFBE. Si penseu que és un error, deixeu un missatge a la meva discussió.)
En [[matemàtiques]], un [[nombre enter|enter]] ''n'' és un '''quadrat perfecte''' (també es diu un ''quadrat'' si no hi ha risc d'ambigüitat) si existeix un enter ''k'' tal que <math>n = k^2</math>; en altres paraules, un quadrat perfecte és el quadrat d'un enter. Per exemple, els enters 0, 1, 4 o 49 són quadrats perfectes.
Es una porqueria
 
En el [[sistema de numeració]] [[sistema decimal|decimal]], la xifra de les unitats d'un quadrat perfecte només pot ser 0, 1, 4, 5, 6 o 9. En [[sistema duodecimal|base dotze]], seria obligatòriament 0, 1, 4 o 9.
 
Els matemàtics s'han interessat sovint per certes curiositats en relació amb els quadrats perfectes. La més coneguda, sobretot per a la seva referència al [[teorema de Pitàgores]], és la igualtat <math>3^2+4^2=5^2</math>, que enceta l'estudi dels [[tern pitagòric|terns pitagòrics]].
 
A partir de [[1995]], se sap segur gràcies a la [[demostració de l'últim teorema de Fermat]] que només els quadrats poden formar identitats com la de les ternes pitagòriques. En efecte, no hi ha cap solució a <math>a^3 + b^3 = c^3</math>amb a, b i c enters, ni a <math>a^d + b^d= c^d</math> amb a, b, c i d enters i d més gran que 2.
 
La [[suma]] dels primers quadrats perfectes ve donada per la següent fórmula:
 
:<math>\sum_{0 \le p \le n}p^2=0^2+1^2+2^2+3^2+\cdots+n^2 = {n (n+1) (2n+1)\over 6}</math>
 
== Llista dels 10 primers quadrats perfectes ==