Compost químic: diferència entre les revisions

Contingut suprimit Contingut afegit
cosas de la vida
m Revertides les edicions de 95.123.96.18. Si penseu que és un error, deixeu un missatge a la meva discussió.
Línia 1:
{{TOCright}}
Un '''compost químic''' és una [[substància pura]] formada per dos o més [[element químic|elements químics]] i que pot descompondre's en aquests per mètodes químics apropiats.<ref name=Babor />
 
Els composts, igual que les mescles, estan constituïts per dos o més elements químics diferents, però es diferencien essencialment d'aquestes en els següents aspectes:
# Els components de les mescles poden separar-se per medis físics ([[Filtració (mètode de separació)|filtració]], [[decantació]], [[destil·lació]],...), però els constituents dels composts, no.
# Les mescles tenen les propietats dels seus components, però els composts posseeixen les seves propietats específiques corresponents.
# Les mescles poden existir en qualsevol proporció mentre que els composts es formen a partir dels elements químics en proporció invariable ([[llei de les proporcions definides]] enunciada entre 1794 i 1804 pel químic francès [[Joseph Louis Proust]]).
# La formació o descomposició d'un compost químic va sempre unida a un despreniment o absorció de [[calor]], mentre que per a una mescla l'efecte calorífic és nul o en tot cas, molt petit.<ref name=Babor />
 
En general els composts químics tenen una [[estructura química]] definida i única i amb una relació determinada dels components. Tanmateix, hi ha un petit nombre de composts que no compleixen la [[llei de les proporcions definides]], anomenats no estequiomètrics o [[berthòl·lids]]: per exemple, Cu<sub>1,7</sub>S i especialment els composts intermetàl·lics i els intersticials. La majoria dels compostos sí que compleixen la llei de les proporcions definides i s'anomenen [[daltònids]], en record del químic anglès [[John Dalton]] que, amb la seva [[teoria atòmica]], donà una base teòrica que explicava la llei de les proporcions definides.
 
Actualment (2009) el nombre d'elements químics és de 118 (90 d'ells naturals i la resta sintètics), mentre que el de composts químics supera els 50 milions i en constant creixement (aproximadament 12.000 noves substàncies diàries, majoritàriament composts químics).<ref name=CAS>{{ref-web |url=http://www.cas.org/index.html |títol=CAS |consulta=6 octubre 2009 |obra= |editor=American Chemical Society |data= |llengua=anglès }}</ref>
 
<gallery widths="125px" heights="100px" perrow="3">
Fitxer:TauTropfenGerbera1.JPG|Gotes d'[[aigua]]. L'aigua és un compost inorgànic, covalent, de fórmula H<sub>2</sub>O
Fitxer:Pyrite 60608.jpg|La [[pirita]] és un sulfur, un compost iònic format per [[ferro]] i [[sofre]] (FeS<sub>2</sub>)
Fitxer:Nitrato de Chile 01 by-dpc.jpg|El nitrat de Xile ([[nitrat de sodi]], NaNO<sub>3</sub>), és un [[fertilitzant|adob]] natural
Fitxer:Car tires.jpg|Els [[pneumàtic]]s es fabriquen amb [[cautxú]] natural i sintètic
Fitxer:Surgical gloves 19.JPG|Guants fabricats amb [[neoprè]], un polímer sintètic
Fitxer:Paracetamol generico.jpg|[[Paracetamol]], un medicament
</gallery>
 
== Formació de composts químics ==
La majoria dels [[element químic|elements químics]] existeixen en combinació amb altres elements formant els composts químics. De fet, només una petita quantitat d'elements es troben lliures a la natura: els [[gas noble|gasos nobles]] en forma d'àtoms solitaris, l'[[oxigen]] i el [[nitrogen]] en forma de molècules diatòmiques, O<sub>2</sub> i N<sub>2</sub>, el sofre en forma de molècules de vuit àtoms, S<sub>8</sub>, el [[carboni]] en forma de [[Grafit (mineral)|grafit]] o [[diamant]] i els metalls nobles [[coure]], [[Plata|argent]], [[or]] i [[platí]].
 
La raó per la qual els àtoms es combinen per donar composts químics resideix en el fet que, en aproximar-se fins a distàncies molt petites, els seus [[nigul electrònic|niguls electrònics]] interaccionen de forma que l'[[energia]] del sistema disminueix. Podem dir, també, que com a conseqüència d'aquesta interacció es generen forces d'atracció.<ref name=Cotton> {{ref-llibre |cognom=Cotton |nom=A. |coautors=Wilkinson,G |títol=Química inorgánica avanzada |editorial=McGrLimusa |lloc=México |data=1978 |edició=2a ed.|isbn= }}</ref>
 
Per tant els [[electró|electrons]] externs dels àtoms són els responsables de la formació de composts. Hi ha dues formes generals:
# Per transferència d'electrons dels àtoms d'un element cap a l'àtom d'un altre element per a formar [[compost iònic|composts iònics]], que queden enllaçats per atracció electrostàtica.
# Per compartició d'electrons entre àtoms diferents per a formar [[compost covalent|composts covalents]], que queden enllaçats degut a un efecte quàntic, la major deslocalització dels electrons.
 
Aquests processos generen els [[enllaç químic|enllaços químics]], les forces que mantenen units els àtoms dels elements en un compost.<ref name=Silberberg> {{ref-llibre |cognom=Silberberg |nom=M.S |títol=Química general |editorial=McGraw-Hill |lloc=México |data=2002 |isbn=970-10-3528-3 }}</ref>
 
== Classificacions ==
=== Classificació segons el tipus d'enllaç ===
Els composts químics es poden classificar segons el tipus d'[[enllaç químic]] en:
* '''Covalents''': Són composts químics on els àtoms resten units per [[Enllaç covalent|enllaços covalents]]. Si existeix una petita diferència entre dos àtoms quant a la tendència a perdre o guanyar electrons, observam una compartició d'electrons. Aquest tipus d'enllaç és més important entre àtoms no metàl·lics. Cada àtom atreu als seus electrons perquè té [[energia d'ionització]] alta, però també atreu als electrons dels altres àtoms. Això fa que els àtoms s'uneixin per formar un compost. En la majoria dels caos es generen [[molècula|molècules]] separades i la fórmula química reflecteix el nombre real d'àtoms a la molècula ([[fórmula molecular]]).<ref name=Silberberg /> Exemples: [[Diòxid de carboni]], CO<sub>2</sub>; [[àcid periòdic]], HIO<sub>4</sub>; [[pentaclorur de fòsfor]], PCl<sub>5</sub>; [[etanol]], CH<sub>3</sub>CH<sub>2</sub>OH, [[àcid acètic]], CH<sub>3</sub>COOH.
* '''Iònics''': Són composts on els àtoms es mantenen units mitjançant [[Enllaç iònic|enllaços iònics]]. Aquest enllaç s'observa típicament entre àtoms amb grans diferències en la seva tendència a perdre o guanyar electrons. Aquestes diferències s'observen entre metalls reactius (grups 1 i 2 de la [[taula periòdica]]) i no-metalls (grup 17 o [[halogen|halògens]] i la part superior del 16). L'àtom metàl·lic de baixa [[energia d'ionització]] perd un o dos electrons de valència, mentre que l'àtom no metàl·lic, d'[[afinitat electrònica]] molt negativa, guanya electrons. Es produeix una transferència d'electrons del metall al no-metall, i cada àtom forma un ió amb la [[configuració electrònica]] de [[gas noble]]. L'atracció electrostàtica entre els ions de diferent signe els porta a formar una estructura tridimensional d'un sòlid iònic, la qual fórmula química representa la proporció catió/anió ([[fórmula empírica]]).<ref name=Silberberg /> Exemples: [[Òxid de sodi]], Na<sub>2</sub>O; [[clorur de liti]], LiCl; [[sulfur de potassi]], K<sub>2</sub>S; [[hidrur de calci]], CaH<sub>2</sub>. També existeixen composts iònics en els quals l'anió o el catió és poliatòmic, és a dir, està format per diversos àtoms units per enllaç covalent i amb càrrega elèctrica. Exemples de cations poliatòmics: [[amoni]], NH<sub>4</sub><sup>+</sup> i [[uranil]], UO<sub>2</sub><sup>2+</sup>. Exemples d'anions poliatòmics, els [[oxoanió|oxoanions]] [[carbonat]], CO<sub>3</sub><sup>2-</sup>, [[sulfat]], SO<sub>4</sub><sup>2-</sup>, [[nitrat]], NO<sub>3</sub><sup>-</sup>.
* '''[[Ió complex|Complexos]]''': units per [[Enllaç covalent coordinat|enllaços covalents coordinats]].
 
=== Classificació genèrica ===
Hom classifica genèricament els composts en:
* '''Orgànics''' o composts de [[carboni]] i [[hidrogen]], amb altres elements o sense, i en
* '''Inorgànics''', que no contenen carboni (excepte òxids de carboni, carbonats, carburs, etc.).
 
==== Composts orgànics ====
Originàriament, parlar de composts orgànics era parlar dels composts produïts pels éssers vius. Arran de la caiguda en desús de la [[teoria de la força vital]], l'àmbit d'estudi dels composts orgànics s'amplià també a les substàncies artificials, sintetitzades als laboratoris. Actualment, hi ha milions de composts orgànics coneguts.<ref name=CAS /> El fet que pugui existir un nombre tan extraordinari de combinacions a partir d'un nombre d'elements químics reduït ([[carboni]], [[hidrogen]], [[oxigen]], [[halògen]]s, [[nitrogen]], [[sofre]] i [[fòsfor]], principalment), a diferència del que ocorre en el camp de la [[química inorgànica]], es fonamenta, d'una banda, en la possibilitat que presenta l'[[àtom]] de carboni d'establir [[enllaç covalent|enllaços covalents]] amb altres àtoms del mateix element per a formar cadenes i xarxes, i de l'altra, en l'existència de molts diversos [[grup funcional|grups funcionals]], en els quals intervenen el carboni i els elements restants que apareixen en els composts orgànics. Aquest fet condiciona una visió del compost orgànic en la qual hom pot considerar per separat l'estructura bàsica o esquelet carbonat i el conjunt de grups funcionals ancorat sobre aquest.
 
Quan els composts són formats únicament per carboni i hidrogen, són anomenats [[hidrocarbur]]s. Teòricament, i sovint també en la pràctica, els composts orgànics poden ésser considerats com a derivats dels hidrocarburs per substitució d'àtoms d'hidrogen per altres àtoms o grups. El correcte coneixement de l'estructura dels composts orgànics arrenca de la formulació de les teories estructurals de [[Friederich August Kekulé|Kekulé]]-[[Archibald Scott Couper|Couper]] i de [[Aleksandr Butlerov|Aleksandr Mikhailovich Butlerov]], les quals donaren una visió fonamental de la natura de les cadenes carbonades, i en particular pel que fa a la dels composts aromàtics. Posteriorment, la noció d'[[estereoquímica]], derivada de les idees sobre la [[isomeria]] geomètrica i l'àtom de carboni asimètric degut a [[Jacobus Henricus van 't Hoff]] i a [[Joseph Achille Le Bel]], la introducció del concepte d'[[enllaç covalent]], amb el paper rellevant que aquest té en la química dels composts orgànics, i la formulació de les [[teoria quàntica|teories quàntiques]] de l'enllaç han proporcionat un coneixement gairebé perfecte del problema de l'estructura molecular dels composts orgànics.<ref name=GEC />
 
===== Classificació per origen dels composts orgànics =====
Com a conseqüència de la concepció original de la química orgànica, hi ha la tendència a agrupar els composts orgànics d'acord amb llur origen:
* '''natural''', la qual cosa dóna lloc al que hom acostuma a denominar química orgànica dels productes naturals, que comprèn l'estudi de [[lípid]]s, [[glúcid]]s, [[aminoàcid]]s i [[proteïna|proteïnes]], [[terpenoide]]s, [[esteroide]]s, [[alcaloide]]s, [[antocianina|antocianines]], [[prostaglandina|prostaglandines]], [[porfirina|porfirines]], [[vitamina|vitamines]], sediments (dels quals cal esmentar, particularment, l'estudi del [[petroli]], el qual ha arribat a constituir una autèntica especialitat, anomenada [[petroquímica]]), etc.
<gallery>
Fitxer:Urea.png|[[Urea]]
Fitxer:Zitronensäure - Citric acid.svg|[[Àcid cítric]]
Fitxer:Cholesterol with numbering.svg|[[Colesterol]]
Fitxer:Morfine.png|[[Morfina]]
</gallery>
 
* '''artificials''', composts sintetitzats al laboratori que no es troben a la natura. Dins aquest context, hom pot parlar, entre molts d'altres, d'agents refrigerants, [[colorant]]s, [[combustible]]s, [[detergent]]s, [[dissolvent]]s, [[fibra sintètica|fibres sintètiques]], [[perfum]]s i [[aromatitzant]]s, [[plàstic]]s, [[pintura|pintures]], [[medicament]]s, [[tensioactiu]]s, etc.
<gallery>
Fitxer:Chloroform2.svg|[[Cloroform]]
Fitxer:Benz4.png|[[Benzè]]
Fitxer:PET.png|[[Polietilentereftalat]]
Fitxer:Trinitrotoluene acsv.svg|[[Trinitrotoluè]]
</gallery>
 
===== Classificació per estructures dels composts orgànics =====
Hom ha emprat el criteri estructural per a delimitar els diferents composts orgànics. Així, hi ha:
* Composts [[alifàtic]]s o acíclics, composts amb estructures obertes, lineals o ramificades, saturades o insaturades.
* Composts [[alicíclic]]s, inclouen els composts carbocíclics no aromàtics.
* Composts [[aromàtic]]s, que són els composts derivats formalment del [[benzè]].
* [[Heterocicle]]s, composts carbocíclics, aromàtics o no, que contenen un o més heteroàtoms en l'anell carbonat.
* [[Compost organometàl·lic|Compostos organometàl·lics]], grup de compostos on hi ha enllaços entre metalls i carbonis i que també hom pot considerar-los composts inorgànics.
* [[Macromolècula|macromolècules]], composts, tant naturals com sintètics, les molècules dels quals són [[polímer]]s.<ref name=GEC />
 
<gallery widths="85px" heights="120px" perrow="6">
Fitxer:Hexafluoropropylene.gif|Un compost alifàtic, l'[[hexafluoropropilè]]
Fitxer:Cyclobutene-3D-balls.png|Un compost alicíclic, el [[ciclobutè]]
Fitxer:1-Methylnaphthalene 3D.png|Un compost aromàtic, l'[[1-metilnaftalè]]
Fitxer:Thymine-3D-balls.png|Un compost heterociclic, la [[timina]]
Fitxer:Iron-pentacarbonyl-from-xtal-3D-balls.png|Un compost organometàl·lic, el [[pentacarbonil de ferro]]
Fitxer:1EDP human endothelin1 02.png|Una macromolècula petita, la [[endotelina]] humana, una [[hormona]]
</gallery>
 
===== Classificació per grups funcionals dels composts orgànics =====
D'altra banda, els distints grups funcionals confereixen als composts que els contenen propietats físiques i químiques molt relacionades, la qual cosa justifica una classificació dels composts orgànics segons aquest criteri. Així, hom sol parlar d'[[alcà|alcans]], [[alquè|alquens]], [[alquí|alquins]], derivats halogenats, [[nitril]]s, [[alcohols]], [[fenol]]s, [[quinona|quinones]], [[èter]]s, [[aldehid]]s, [[cetona|cetones]], [[àcid carboxílic|àcids carboxílics]], [[èster]]s, [[anhídrid d'àcid|anhídrids d'àcid]], [[amina|amines]], [[Amida (grup funcional)|amides]], [[sulfona|sulfones]], etc.<ref name=GEC />
 
<gallery widths="85px" heights="120px" perrow="6">
Fitxer:Alkyne general.svg|[[Alquil]]
Fitxer:Alcohol-(general)-skeletal.png|[[Hidroxil]]
Fitxer:Ether-(general).png|[[Èter]]
Fitxer:Amino-group-primary-2D-flat.png|[[Amina]]
Fitxer:Aldehyde2.png|[[Aldehid]]
Fitxer:Ketony.svg|[[Cetona]]
Fitxer:Carboxylic-acid-skeletal.png|[[Carboxil]]
Fitxer:Ester-general.png|[[Èster]]
Fitxer:Carbamoyl-group-2D.svg|[[Carbamoil]]
Fitxer:Azo-group.png|[[Azo]]
Fitxer:Nitro-group.png| [[Nitro (grup funcional)|Nitro]]
Fitxer:Sulfoxide.png|[[Sulfòxid]]
</gallery>
 
== Descripció dels principals grups de composts orgànics ==
=== Hidrocarburs ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Oil platform P-51 (Brazil).jpg|thumb|left|Plataforma petroliera. El petroli és una mescla d'hidrocarburs]]
</div>
[[Fitxer:But-1-ene-3D-balls.png|thumb|1-butè, un hidrocarbur acíclic o alifàtic insaturat, un alquè.]]
{{Principal|Hidrocarburs}}
Els hidrocarburs són composts orgànics formats exclusivament per [[carboni]] i [[hidrogen]]. Els àtoms de carboni poden unir-se entre ells formant cadenes més o menys llargues, per mitjà d'[[enllaç covalent|enllaços covalents]] simples, dobles o triples, i les [[valència (química)|valències]] que resten lliures són saturades amb hidrogen.
 
Hom distingeix els hidrocarburs acíclics, de cadena oberta, dels cíclics, de cadena tancada.
* Els '''hidrocarburs acíclics''', o '''alifàtics''' (del grec ''αλειψα'', oli, perquè els greixos més importants són d'aquest tipus de composts),<ref name=Klages /> poden ésser saturats o insaturats, i llurs cadenes poden ésser lineals o ramificades, la qual cosa dóna lloc a l'existència molts d'[[isòmer]]s, que tenen el mateix nombre d'àtoms de carboni i d'hidrogen però amb propietats diferents, a causa de les distintes estructures moleculars.
** Els '''hidrocarburs saturats''' només tenen enllaços simples. També s'anomenen [[alcà|alcans]] o parafines (del llatí ''parum affinis'', poca afinitat, perquè tenen poca tendència a reaccionar).<ref name=Klages /> Per exemple: [[metà]] CH<sub>4</sub>, [[età]] CH<sub>3</sub>-CH<sub>3</sub>, [[propà]] CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>3</sub>.
** Els '''hidrocarburs insaturats''' presenten dobles i triples enllaços en les molècules i, per tant, contenen menys àtoms d'hidrogen que els hidrocarburs saturats del mateix nombre de carbonis. Hom els divideix en:
*** [[alquè|alquens]], etilènics o olefines (del francès ''gaz oléfiant'', gas oleificant, que fa referència al fet que els gasosos quan reaccionen amb [[clor]] o [[brom]] donen lloc a productes oliosos),<ref name=Klages /> si tenen dobles enllaços, per exemple [[etè]] CH<sub>2</sub>=CH<sub>2</sub>, [[propè]] CH<sub>2</sub>=CH-CH<sub>3</sub>, i
*** [[alquí|alquins]] o acetilènics (nom derivat del més simple, l'[[acetilè]] o etí), si tenen triples enllaços. Per exemple [[etí]] CH≡CH, [[propí]] CH≡C-CH<sub>3</sub>.
* Els '''hidrocarburs cíclics''' formen dos grans grups:
** els '''alicíclics''', anomenats també naftènics, que comprenen els [[cicloalcà|cicloalcans]], els [[cicloalquè|cicloalquens]] i els [[cicloalquí|cicloalquins]], de propietats semblants a les parafines, i
** els '''[[aromàtic]]s''' (perquè els primers compostos descoberts, derivats del [[benzè]], tenen una olor aromàtica agradable),<ref name=Klages /> que tenen propietats especials, a causa de l'estructura de l'anell benzènic.
 
Els hidrocarburs són obtinguts principalment del [[gas natural]] (saturats de baixa [[massa molecular]]: [[metà]], [[età]], [[propà]] i [[butà]]), del [[petroli]] (parafines, aromàtics i alicíclics) i del quitrà de l'[[hulla]] (preferentment aromàtics: [[benzè]], [[toluè]], [[xilol]], [[naftalè]], [[antracè]], etc.) i, en menys quantitat, de les [[cera|ceres]], [[resina|resines]] i [[oli essencial|olis essencials]] d'origen vegetal.<ref name=GEC />
 
=== Alcohols ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Armagnac-img 0465.jpg|thumb|left|Els liquors contenen quantitats elevades d'etanol]]
</div>
[[Fitxer:Ethanol-alternative-3D-balls.png|thumb|Estructura de l'[[etanol]]]]
{{Principal|Alcohol}}
Els '''alcohols''' són substàncies orgàniques caracteritzades per la presència d'un [[grup funcional]] constituït per un [[hidroxil]], -OH, enllaçat directament a un [[carboni]] que no és [[aromàtic]].
 
Els alcohols, R-OH, han pres llur nom del més antigament conegut de tots ells, l'esperit de vi, alcohol etílic o [[etanol]]. Segons que el carboni unit a l'hidroxil sigui primari, secundari o terciari, els alcohols són anomenats també primaris, secundaris o terciaris. Si la molècula conté dos, tres o més grups funcionals alcohol, els alcohols s'anomenen, respectivament, [[diol]]s (o [[glicol]]s), triols i, en general, poliols.
 
Segons les regles de la [[IUPAC]], els alcohols es designen afegint al nom de l'hidrocarbur el sufix ''-ol'', tot preservant la n etimològica (ex: metà, metà-n-ol), i indicant la posició de l'hidroxil amb un nombre en prefix, per exemple [[2-butanol]], CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub>. Això no obstant, si la molècula conté un altre grup, prioritari en nomenclatura, els alcohols es designen amb el prefix ''hidroxi-'', exemple 4-hidroxipentanal, CH<sub>3</sub>CH(OH)CH<sub>2</sub>CH<sub>2</sub>CHO, és un [[aldehid]] amb una funció hidroxil. Sovint els alcohols encara es designen fent seguir el mot ''alcohol'' de l'adjectiu corresponent al grup R (exemple alcohol al·lílic, CH<sub>2</sub>=CHCH<sub>2</sub>OH).
 
Les propietats físiques dels alcohols depenen del grup R. Quan R és petit, són líquids miscibles amb l'aigua o molt solubles, d'olor característica i de sabor ardent i fortament associats (per formació d'[[enllaç d'hidrogen|enllaços hidrogen]]), cosa que fa que llurs [[punt d'ebullició|punts d'ebullició]] siguin elevats ([[metanol]] 65º, [[etanol]] 78º, [[1-propanol]] 97º, 1-hexanol 156º). La solubilitat en aigua disminueix ràpidament quan la massa molecular augmenta. Quan existeixen diversos isòmers de posició, el punt d'ebullició acostuma a ésser tant més baix (i el [[punt de fusió]] tant més alt) com més gran és la substitució al veïnatge del grup -OH.<ref name=GEC />
 
Per la seva inestabilitat i reactivitat, els alcohols no poden trobar-se en el regne mineral, però sí que es troben en la matèria viva.<ref name=Klages>{{ref-llibre |cognom=Klages |nom=F. |títol=Tratado de Química Orgánica. Tomo I |llengua=castellà |edició=1a ed.|editorial=Reverté |lloc=Barcelona |data= |any=1969 |pàgines= |isbn=8429173110 }}</ref> L'etanol i alguns dels seus homòlegs superiors es formen en la fermentació dels [[sucre]]s i nombrosos olis essencials i resines contenen alcohols diversos. Deixant de banda els poliols, els àcids alcohols i els aminoalcohols, els alcohols bioquímicament importants són l'[[axeroftol]] o [[vitamina A]], els alcohols grassos i, sobretot, els [[esterol]]s.
 
Els alcohols essent molt nombrosos, llurs aplicacions són forçosament molt diverses. Molts d'ells són utilitzats com a [[dissolvent]]s o troben aplicació directa en nombroses indústries, per exemple, [[perfumeria]], [[cosmètica]], pintures, adhesius, indústria farmacèutica, etc. Llur principal ús és, tanmateix, la síntesi, especialment d'èsters, per a obtenir dissolvents, plastificants, detergents, medicaments, etc.<ref name=GEC />
 
=== Èters ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Southworth & Hawes - First etherized operation (re-enactment).jpg|thumb|left|Una de les primeres operacions quirúrgiques on s'emprà dietiléter, o [[etoxietà]], com [[anestèsic]] (1846)]]
</div>
[[Fitxer:Diethyl-ether-3D-balls.png|thumb|Estructura del dietil èter]]
[[Fitxer:Tetrahydrofuran-3D-balls.png|thumb|Tetrahidrofurà, THF, un èter cíclic]]
{{Principal|Èter}}
Els '''èters''' són substàncies orgàniques caracteritzades per la presència del [[grup funcional]] —O— unit a dos radicals hidrocarbonats (aromàtics o no), o bé, en els èters cíclics, formant part d'una cadena alifàtica tancada. La paraula '''èter''' ve del grec ''αιθἠρ'', aire lleuger, que indica que aquests composts són molt volàtils.<ref name=Klages />
 
Els èters (R—O—R') resulten de la substitució dels dos àtoms hidrogen de l'aigua i són geomètricament semblants a l'aigua i als alcohols. D'acord amb les normes de la [[IUPAC]], els èters alifàtics són designats per mitjà del grup RO—, considerat com a substituent de la cadena més llarga, com ara [[metoxietà]], CH<sub>3</sub>-O-CH<sub>2</sub>-CH<sub>3</sub>, [[etoxipropà]], CH<sub>3</sub>-CH<sub>2</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>.
 
Els [[punt de fusió|punts de fusió]] i d'[[punt d'ebullició|ebullició]] dels èters són comparables als dels hidrocarburs de massa molecular semblant. La majoria són immiscibles amb l'aigua, però els èters cíclics [[dioxà]] i [[tetrahidrofurà]], o THF, ho són en totes proporcions. Així la majoria són bons dissolvents de les substàncies orgàniques, però dissolen molt poc els composts inorgànics, per la qual cosa són uns excel·lents dissolvents per als processos d'extracció. Els èters són indiferents a la majoria dels reactius químics. Atès que els derivats de l'oxigen divalent tenen parells d'electrons no compartits disponibles, actuaran com a [[base (química)|base de Lewis]], per tant reaccionen en presència d'[[àcid]]s. La reacció més important que experimenten és la ruptura de l'enllaç C—O.
 
Els èters són obtinguts generalment per reacció d'[[alcohol]]s amb halogenurs d'alquil, reacció coneguda com a [[síntesi de Williamson]]. Els diols, en deshidratar-se, donen èters cíclics.<ref name=GEC />
 
=== Aldehids ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Vanilla extract.JPG|thumb|left|De les càpsules de la [[vainilla]] s'extreu la vanil·lina, que té una funció aldehid]]
</div>
{{Principal|Aldehid}}
[[Fitxer:Butanal-3D-balls.png|thumb|Butanal]]
Els '''aldehids''' són substàncies orgàniques caracteritzades per la presència del [[grup funcional]] '''carbonil''' unit a un hidrogen. La paraula '''aldehid''' deriva d''''al'''cohol '''de'''sh'''id'''ratat.<ref name=Babor />
 
Segons les regles de nomenclatura de la [[IUPAC]], els aldehids alifàtics RCHO es designen afegint al nom de l'hidrocarbur RCH<sub>3</sub> el sufix ''-al'', tot preservant la n etimològica (per exemple: metà → metà-n-al), i els aldehids amb el grup funcional directament fixat a un sistema cíclic, afegint el sufix ''-carbaldehid'' al nom d'aquest. Exemples: butanal, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CHO. Això no obstant, si la molècula conté un altre grup prioritari en nomenclatura, els aldehids es designen amb el prefix ''formil-''. Exemple: àcid p-formilfenilacètic.
 
Els aldehids bullen lleugerament a una temperatura més alta que els [[hidrocarbur]]s, però molt per sota dels [[alcohol]]s corresponents. Els més simples són solubles en aigua i tenen olors fortes i irritants; molts, de massa molecular elevada, tenen, en canvi, olors agradables. Tots són solubles en solvents orgànics.
 
Químicament els aldehids són substàncies neutres, reductores, de reactivitat intensa i variada. Per [[hidrogenació]] catalítica o per [[reducció de Meerwein-Ponndorf-Verley]] donen [[alcohol]]s primaris, i per [[reducció de Clemmensen]], [[hidrocarbur]]s. Per oxidació (per aire, amb el [[reactiu de Fehling]], amb solució argèntica amoniacal, etc.) donen àcids carboxílics. Els mètodes industrials d'obtenció més importants són l'oxidació d'alcohols (per exemple, el metanol en formaldehid); l'oxidació d'hidrocarburs (per exemple, del gas natural o de l'etilè en acetaldehid) i la hidroformilació d'alquens (mètode oxo).
 
Els aldehids lliures són poc freqüents a la natura, bé que hom en troba en diversos olis essencials ([[citral]], [[citronel·lal]], [[anisaldehid]], [[vanil·lina]], etc.). El [[benzaldehid]] és un constituent de molts [[glucòsid]]s. En [[bioquímica]], alguns aldehids ([[gliceraldehid]], [[acetaldehid]], [[piruvaldehid]], etc.) són intermediaris importants en el [[metabolisme]]. Industrialment tenen aplicació extensíssima el formaldehid i l'acetaldehid. En menor grau són també importants (com a intermediaris de síntesi o per llurs aplicacions directes) el [[glioxal]], l'[[isobutiraldehid]], l'[[acroleïna]], el [[crotonaldehid]], el [[furfural]] i el benzaldehid, entre d'altres. Nombrosos aldehids són utilitzats en la preparació de perfums i essències sintètiques.<ref name=GEC />
 
=== Cetones ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Acetona.jpg|thumb|left|L'[[acetona]] s'empra com a dissolvent]]
</div>[[Fitxer:Acetone-3D-balls.png|thumb|Estructura de l'[[acetona]]]]
{{Principal|Cetona}}
Les [[cetones]] són substàncies orgàniques caracteritzades per la presència del [[grup funcional]] C=O (carbonil) unit a dos radicals hidrocarbonats o, en les cetones cícliques, formant part d'una cadena alifàtica tancada.
 
Segons les regles de la [[IUPAC]], les cetones alifàtiques RR'CO són designades, en la nomenclatura substitutiva, afegint al nom de l'hidrocarbur RR'CH<sub>2</sub> (en català, sovint seguit d'una n etimològica) el sufix ''-ona''; davant el nom va el nombre que indica la posició del carboni carbonílic en la cadena. Així, per exemple, [[propanona]], CH<sub>3</sub>COCH<sub>3</sub>, [[butanona]] CH<sub>3</sub>CH<sub>2</sub>COCH<sub>3</sub>. Quan conté altres grups funcionals prioritaris, en nomenclatura es designa amb el prefix ''ceto-'' (cetoàcid, cetoèster).
 
Les cetones més simples, fins a uns dotze àtoms de carboni, són líquides. Les de [[massa molecular]] més baixa són solubles en [[aigua]]; totes ho són en solvents orgànics. Són destil·lables sense descomposició, i d'olor etèrica o aromàtica. Les propietats químiques de les cetones són les generals del grup carbonil exaltades o disminuïdes per les altres funcions presents en la molècula o per l'estructura d'aquesta.
 
Els oxidants forts trenquen la cadena de carbonis de les cetones per les unions immediates al grup carbonil, i donen àcids carboxílics diferents, segons si es fa la ruptura en un costat o l'altre del grup. Per hidrogenació catalítica o per reducció amb alcoholats d'alumini, les cetones passen a alcohols secundaris. Per reducció amb amalgames de [[sodi]] o [[magnesi]] donen 1,2-dialcohols, anomenats pinacones, amb condensació de dues molècules. El pas directe de cetona a hidrocarbur és aconseguit mitjançant la [[reducció de Clemmensen]] o també per la [[reducció de Wolff-Kishner]]. Les [[amina|amines]] primàries es condensen amb les cetones i donen les bases de Schiff. Comparades amb els [[aldehid]]s, les cetones reaccionen poc per [[polimerització]], encara que es condensin per elles mateixes en certes condicions.<ref name=GEC />
 
La més coneguda i utilitzada de les cetones és la [[propanona]] o [[acetona]], que és la que dóna nom al grup. Moltes cetones són emprades com a solvents i com a primeres matèries en [[perfumeria]]. Algunes cetones inferiors, en particular l'acetona, s'originen sovint en la natura com a productes metabòlics anormals. Moltes cetones superiors formen part de productes odorants naturals, per exemple, dels olis eteris i dels [[greix]]os rancis.<ref name=Klages />
 
=== Àcids carboxílics ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Essig-1.jpg|thumb|left|Els vinagres deu el seu gust agre a l'[[àcid acètic]]]]
</div>
[[Fitxer:Acetic-acid-3D-balls.png|thumb|Estructura de l'[[àcid acètic]]]]
{{Principal|Àcid carboxílic}}
Els '''àcids carboxílics''' són substàncies orgàniques de fórmula general R—COOH, que tenen en llur molècula un o diversos grups carboxil i que manifesten, per tant, les propietats àcides que aquest confereix. El grup carboxil ocupa forçosament una posició terminal en l'esquelet dels carbonis, ja que només té un enllaç lliure.
 
Segons quina és la natura del grup R, els àcids carboxílics es classifiquen en alifàtics, alicíclics (que poden ésser, uns i altres, saturats o insaturats), aromàtics i heterocíclics. Si al grup R hi ha d'altres grups funcionals, és possible de distingir també entre un àcid alcohol, un àcid fenol, un àcid cetònic, un aminoàcid, etc.
 
D'acord amb les normes de la [[IUPAC]], els àcids carboxílics són designats fent seguir la paraula ''àcid'' d'un adjectiu format afegint al nom de l'hidrocarbur del mateix nombre de carbonis el sufix ''-oic'' (sense deixar-se la n etimològica: propà → propà + n + oic), quan hi ha un sol carboxil, o ''-dioic'', quan n'hi ha dos. Així, per exemple, els dos àcids saturats de 6 carbonis, de cadena no ramificada, són anomenats [[àcid hexanoic]] i [[àcid hexandioic]]. En alguns casos, no obstant això, resulta més pràctic considerar el grup carboxil com un substituent de la molècula RH. En aquest cas, o bé hom fa precedir el nom de RH de la paraula àcid i li afegeix el sufix ''-carboxílic'' (com, per exemple, àcid ciclopentan-carboxílic C<sub>5</sub>H<sub>9</sub>COOH), o bé hom utilitza el prefix [[carboxi-]] (quan el carboxil no és el substituent principal). La IUPAC accepta, a més, que per a molts àcids carboxílics hom continuï utilitzant els noms trivials corrents, tals com [[àcid fòrmic]], [[àcid acètic]], [[àcid butíric]], [[àcid oxàlic]], àcid [[acrílic]], [[àcid benzoic]], [[àcid cinàmic]], etc. Aquests noms trivials admesos per als àcids serveixen també per a designar llurs derivats i els aldehids corresponents.
 
Les propietats físiques dels àcids carboxílics depenen de llur estructura i de llur massa molecular. En principi, es fonen i bullen netament per damunt dels [[alcohols]], [[amina|amines]], [[aldehid]]s i [[cetona|cetones]] del mateix nombre de carbonis. Això té relació amb el fet que a l'estat cristal·lí o líquid i en solució en certs dissolvents (i, per als més volàtils, àdhuc en part a l'estat de vapor) els àcids carboxílics estan associats, formant dímers, a través dels carboxils. En sèrie alifàtica els primers termes són líquids destil·lables o arrossegables pel vapor d'aigua, i els àcids de nombre de carbonis parell es fonen sempre a més alta temperatura que llurs homòlegs immediats inferior i superior. A mesura que creix la massa molecular, la influència del grup carboxil sobre les propietats físiques va disminuint i així, per exemple, la solubilitat en aigua (total en els primers termes de la sèrie) decreix molt ràpidament. Això mateix passa amb l'olor.
 
Els àcids carboxílics són en general àcids febles, amb valors pK<sub>a</sub> que, en general, varien entre 3 i 5, i la primera acidesa dels diàcids és molt més forta que la dels monoàcids, sobretot si els dos carboxils són pròxims. L'[[àcid|acidesa]] disminueix amb la massa molecular i augmenta amb la proximitat d'un doble enllaç al carboxil; els àcids aromàtics tendeixen també a ésser més forts que els alifàtics. La presència de substituents que atreuen electrons augmenta l'acidesa per efecte inductiu, i aquesta acció és particularment manifesta en el cas dels àcids carboxílics α-halogenats.
 
Els àcids carboxílics donen [[sal (química)|sals]] alcalines solubles en aigua i són estables enfront dels oxidants i reductors. L'únic reductor que els ataca directament és l'[[hidrur d'alumini i de liti]], que permet de transformar-los en [[alcohols]]. L'electròlisi de llurs sals alcalines RCOONa condueix als hidrocarburs R—R ([[reacció de Kolbe]]), i la [[fusió alcalina]] als hidrocarburs RH; la [[piròlisi]] de les sals alcalinotèrries dóna en general cetones. Llurs sals de [[plata]] reaccionen amb els halurs d'alquil donant [[cetona|cetones]], i llurs sals sòdiques reaccionen amb els clorurs d'àcid donant anhídrids d'àcid. Per deshidratació de les sals amòniques són obtingudes amides. Per reacció dels àcids carboxílics amb el pentaclorur o amb l'oxiclorur de fòsfor són obtinguts clorurs d'àcid; per reacció amb els alcohols són obtinguts èsters, i per reacció de Schmidt són obtingudes amines. En fi, per acció del [[clor]] o del [[brom]] té lloc generalment una substitució progressiva dels hidrògens en α del carboxil (o de l'hidrogen d'un carboni terciari no massa allunyat) i són obtinguts, doncs, àcids carboxílics halogenats.
 
Àdhuc deixant de banda els aminoàcids, els àcids carboxílics tenen una importància biològica molt considerable. A l'estat lliure hom no els troba gaire sovint en els animals (per bé que hi ha [[àcid fòrmic]] en les [[formiga|formigues]] i en el [[verí]] de les [[Apoïdeu|abelles]]), però, en canvi, són molt abundants en els sucs cel·lulars de les plantes (àcids fòrmic, [[àcid oxàlic|oxàlic]], [[àcid màlic|màlic]], [[àcid ascòrbic|ascòrbic]], [[àcid tartàric|tartàric]], [[àcid cítric|cítric]], etc.) i en nombroses resines d'origen vegetal ([[àcid abiètic]], [[àcid benzoic|benzoic]], [[àcid cinàmic|cinàmic]], etc.). Diversos àcids carboxílics es formen fàcilment per fermentació (fermentació acètica de l'alcohol, làctica o butírica dels glúcids, etc.). Les plantes els contenen també en abundància en forma de sals (en llurs sucs aquosos) i en forma d'èsters (en els olis essencials). No obstant això, és sobretot en forma d'èsters glicèrics (que constitueixen els greixos) que els àcids carboxílics són universalment presents en els éssers vius. Els àcids carboxílics que hom troba combinats en els greixos són anomenats [[àcid gras|àcids grassos]].<ref name=GEC />
 
=== Èsters ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Table grapes on white.jpg|thumb|left|L'aroma del raïm és degut a l'[[heptanoat d'etil]]]]
</div>
[[Fitxer:Methyl acetate-balls.png|thumb|Estructura de l'acetat de metil]]
{{Principal|Èster}}
Els '''èsters''' són substàncies orgàniques caracteritzades per la presència del [[grup funcional]] -COOR, és a dir, per la unió del grup acil amb un grup alquil.En el cas d'èsters d'àcids inorgànics (nítric, sulfúric, fosfòric), el grup alquil va lligat al residu d'àcid mineral (-NO<sub>2</sub>, -SO<sub>3</sub>H, -PO<sub>3</sub>H<sub>2</sub>).
 
La paraula «èster», igual que «èter», ve del grec ''αιθἠρ'', aire lleuger, que indica que aquests composts són molt volàtils (el [[metanoat de metil]] bull a 32&nbsp;°C, l'[[acetat de metil]] a 57&nbsp;°C, etc.).<ref name=Klages />
 
D'acord amb les normes de la [[IUPAC]], els èsters són designats expressant primerament la part que prové de l'[[àcid carboxílic]] per un substantiu format afegint el sufix ''-oat'' (precedit d'una n etimològica) el nom de l'[[hidrocarbur]] del mateix nombre d'àtoms de [[carboni]] que l'àcid, i després el nom del radical de la part catiònica, com ara [[heptanoat d'etil]]. Quan hom utilitza els noms trivials corrents dels adjectius característics dels àcids, com fòrmic, acètic, benzoic, etc., el substantiu que en deriva per designar la part aniònica és el format canviant el sufix ''-ic'' d'aquests adjectius pel sufix ''-at'', com en el cas de l'[[acetat d'etil]]. Si hom no pot formar el nom de l'anió, acostuma a emprar perífrasis, com èster benzílic de la metionina.
 
Per [[hidròlisi]] els èsters regeneren l'[[àcid]] i l'[[alcohol]]; això és important sobretot per als èsters naturals ([[cera|ceres]], [[oli]]s i [[greix]]os; en el cas dels dos darrers, si la hidròlisi és bàsica hom obté els [[sabó|sabons]]).<ref name=GEC />
 
Els èsters de baixa massa molecular són molt emprats com a solvents ([[acetat de metil]], d'etil i de butil), i els èsters nítrics de polialcohols tenen importància com a [[explosiu]]s ([[trinitroglicerina]] o, millor, [[trinitrat de glicerina]], trinitrat de [[cel·lulosa]], etc.) i en l'obtenció de [[cel·luloide]]. Els èsters d'àcids no saturats, com els dels [[àcid acrílic|àcids acrílic]] i [[àcid metacrílic|metacrílic]], es polimeritzen amb facilitat i donen matèries plàstiques, d'un gran consum ([[acrilat]]s, [[metacrilat]]s). Els èsters fosfòrics i tiofosfòrics han adquirit importància com a [[insecticida|insecticides]].<ref name=Klages /> La sal sòdica del sulfat àcid de lauril, [[sulfat de lauril sodi]], s'empra extensament com a [[detergent]], fins i tot amb aigües dures, ja que el sulfat de lauril calci és un poc soluble en aigua. També destaquen els èsters que formen part d'essències naturals i s'empren en la composició dels [[perfum]]s sintètics: olor d'[[albercoc]] ([[butanoat d'etil]] i [[butanoat d'amil]]), de [[brandi]] i [[vi]] ([[heptanoat d'etil]]), de [[perera|pera]] ([[acetat d'isoamil]]), de [[plàtan (fruita)|plàtan]] ([[acetat d'isoamil]]), de [[pinya americana|pinya]] ([[butirat de butil]]), de [[Raïm (fruit)|raïm]] ([[metanoat d'etil]] i [[heptanoat d'etil]]), de [[rom]] ([[propionat d'isobutil]]), de [[taronja]] ([[acetat d'octil]]), etc.<ref name=Babor>{{Ref-llibre |cognom=Babor |nom=J.A. |cognom2=Ibarz |nom2=J. |títol=Química General Moderna |llengua=castellà |edició=8a ed.|editorial=Marín |lloc=Barcelona |any=1979 |isbn=84-7102-997-9}}</ref>
 
=== Amides ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:DEET products.jpg|thumb|left|Algunes amides s'empren com a repel·lents d'insectes]]
</div>
[[Fitxer:Urea 2D & Urea 3D.png|thumb|250px|Estructura de la urea. Negre carboni, blanc hidrogen, vermell oxigen i blau nitrogen]]
{{Principal|Amida (grup funcional) }}
Les '''amides''' són [[compost orgànic|composts orgànics]] que deriven formalment de l'[[amoníac]] o d'una [[amina]] primària o secundària per substitució per [[radical acil|radicals acil]] d'un [[hidrogen]] (amides primàries), de dos hidrògens (amides secundàries) o de tres hidrògens (amides terciàries). Les úniques importants són les amides primàries, en general dites simplement amides. Llur fórmula general és R-CONR'R", en la qual els radicals R, R', R" poden ésser hidrogen o un grup hidrocarbonat.
 
El nom '''amida''' ve del francès ''amide'', format amb el radical de ''ammoniaque'' i ''-ide'', sufix que indica la presència d'un [[àcid]], provinent del mot ''acide''.
 
Les amides s'anomenen canviant en el nom de l'àcid carboxílic R-COOH el sufix «-ic» i «-oic» per «-amida» o la terminació carboxílic per carboxamida. Per excepció, l'amida de l'[[àcid oxàlic]] s'anomena [[oxamida]]. Exceptuant la [[formamida]], les amides no substituïdes en el [[nitrogen]] són sòlides, i llurs [[punt de fusió|punts de fusió]] i d'[[punt d'ebullició|ebullició]] són superiors als dels àcids corresponents.
 
Les amides són poc bàsiques, a causa de la important contribució de la forma ressonant b en la qual el [[nitrogen]] ja no suporta el parell d'electrons no compartits al qual són degudes les propietats bàsiques de les amines. A causa d'aquesta ressonància, la [[Reactivitat química|reactivitat]] del [[carbonil]] amídic enfront d'agents [[nucleòfil]]s és menor que la dels carbonils dels [[àcid]]s, [[èster]]s, etc.
 
Les amides es preparen principalment: per [[acilació]] de l'[[amoníac]] o d'amines primàries o secundàries per [[destil·lació]] lenta de [[amoni|sals amòniques]] d'àcids carboxílics i també per [[Reacció d'hidratació|hidratació]], en el medi àcid o bàsic, de [[nitril]]s.
Les amides monomèriques són rares en la natura, amb poques excepcions, tals com la [[urea]]. Cal notar, però, que els constituents principals de la trama estructural de la matèria viva, els [[pèptid]]s i les [[proteïna|proteïnes]], són poliamides, en les quals es manifesta la solidesa de l'enllaç amídic.
 
Les aplicacions de les amides són molt diverses. A més de llur utilització com a intermediaris de síntesi, moltes d'elles són emprades directament com a solvents, plastificants, estabilitzants, medicaments, etc. Imitant la natura, l'home sintetitza, a més, diversos polímers poliamídics, que són emprats per a la fabricació de fibres sintètiques ([[perló]], [[niló]]) i en la indústria dels [[plàstic]]s.<ref name=GEC />
 
=== Amines ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Ketamine bottles.jpg|thumb|left|Injectables de [[ketamina]] emprats a veterinària]]
</div>
{{Principal|Amina}}
[[Fitxer:Ethylamine-3D-balls.png|thumb|[[Etilamina]]]]
Les '''amines''' són composts orgànics que deriven formalment de l'[[amoníac]], NH<sub>3</sub>, per substitució d'un o més àtoms d'[[hidrogen]] per grups hidrocarbonats R. Les amines són primàries RNH<sub>2</sub>, secundàries R<sup>1</sup>R<sup>2</sup>NH o terciàries R<sup>1</sup>R<sup>2</sup>R<sup>3</sup>N, segons que hi hagi un, dos o tres hidrògens substituïts.
 
En la nomenclatura sistemàtica, les amines primàries s'anomenen afegint el sufix ''-amina'' bé al nom del grup R, bé al nom del compost RH. Exemple: [[metilamina]] CH<sub>3</sub>NH<sub>2</sub>. Les amines secundàries i terciàries simètriques s'anomenen afegint els prefixos ''di-'' i ''tri-'', i les no simètriques considerant-les productes de substitució de l'amina primària més complicada. Exemples: [[trietilamina]] (C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>N. Quan el grup -NH<sub>2</sub> no és el principal en la molècula, per a designar-lo és emprat el prefix ''amino-''. Exemple: [[àcid p-aminobenzoic]]. Per a diverses amines importants, la [[IUPAC]] ha acceptat també noms trivials, tals com [[anilina]], [[adenina]], etc.
 
Les amines primàries i secundàries poden formar [[enllaç d'hidrogen|enllaços d'hidrogen]] i tenen, per tant, [[punt d'ebullició|punts d'ebullició]] superiors als dels [[hidrocarbur]]s de [[massa molecular]] similar. Per la mateixa raó, els termes més senzills de la sèrie són solubles en [[aigua]].
 
Les amines són composts bàsics a causa del parell d'electrons no compartits del [[nitrogen]], que poden captar un [[protó]]. Les amines aromàtiques, com l'anilina, són molt menys bàsiques que les alifàtiques, a causa de la participació del parell electrònic no compartit en la ressonància del nucli aromàtic.
Com a conseqüència de la seva basicitat, les amines donen amb els àcids inorgànics sals cristal·lines d'elevat punt de fusió i molt higroscòpiques. Les amines lliures s'oxiden fàcilment i donen òxids d'amina, cosa que les fa útils com a [[antioxidant]]s. Les amines són preparades bé per reducció de composts nitrogenats de grau d'oxidació superior, tals com nitroderivats, [[nitril]]s, [[imina|imines]], [[Amida (grup funcional)|amides]] i [[oxima|oximes]], bé per alquilació de l'amoníac, reacció que malgrat donar mescles d'amines primàries, secundàries i terciàries té interès industrial, puix que els diversos productes poden ésser separats amb una adequada destil·lació fraccionada.<ref name=GEC />
 
Les amines participen de manera destacada en els sistemes bioquímics, estan àmpliament distribuïdes en la natura en forma d'[[aminoàcid]]s, [[proteïna|proteïnes]], [[alcaloide]]s i [[vitamina|vitamines]]. Molts de derivats d'amines complexes tenen una activitat fisiològica pronunciada, per exemple la [[penicilina]], [[LSD]], el [[verí]] de la [[cicuta]], la [[novocaïna]]. S'empren per obtenir [[medicament]]s ([[sulfamida|sulfamides]] i [[anestèsic]]s locals). La fibra sintètica [[niló]] s'obté a partir de dos components, un dels quals és una amina.<ref name=Allinger>{{Ref-llibre |cognom=Allinger |nom=N.L |coautors=''et al.'' |títol=Química orgánica |llengua=castellà |editorial=Reverté |lloc=Barcelona |data=1984 |volum=I |isbn=84-291-7016-2 }} </ref>
 
== Descripció dels principals grups de composts inorgànics ==
=== Hidrurs ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Antarctica blue white blue.jpg|thumb|left|Aigua, l'hidrur d'oxigen]]
</div>
[[Fitxer:Sodium-hydride-3D-vdW.png|thumb|Estructura cristal·lina de l'hidrur de sodi. En blanc els anions hidrur, H<sup>-</sup> i en lila els cations sodi, Na<sup>+</sup>]]
{{Principal|Hidrur}}
Combinació de l'[[hidrogen]] amb un element, gairebé sempre [[metall|metàl·lic]].
* Els '''hidrurs iònics''' formen xarxes cristal·lines amb anions hidrur, H<sup>-</sup>, i cations dels metalls. Els hidrurs [[alcalí|alcalins]] tenen una estructura cristal·lina de cares centrades, mentre que els [[alcalinoterri]]s tenen una estructura cúbica de cares centrades. Són sòlids a temperatura ambient i amb les propietats característiques dels composts iònics.
* Els '''hidrurs moleculars''' són substàncies d'[[enllaç covalent]] del tipus B<sub>2</sub>H<sub>6</sub>, PH<sub>3</sub>, AsH<sub>3</sub>, obtingudes fent reaccionar l'hidrogen atòmic sobre el no metall.
* Els '''hidrurs radicals''' són agrupaments diatòmics incomplets, identificats per l'anàlisi espectral, en l'atmosfera estel·lar; no han pogut ésser aïllats a causa de llur labilitat química i de llur curtedat de vida. Hom els considera com a [[radical lliure|radicals lliures]].
* Els '''hidrurs d'inserció''' són composts obtinguts fent absorbir l'hidrogen per certs elements de transició, com el [[titani]] (TiH<sub>2</sub>). Hom suposa que l'hidrogen s'introdueix en les fissures intersticials de la malla metàl·lica i en modifica les propietats.
 
Els hidrurs són emprats com a agents reductors, com a [[carburant]]s molt energètics i com a intermediaris de [[síntesi química|síntesi]], molts dels quals, però, tenen un interès exclusivament teòric.<ref name=GEC>{{Ref-llibre |editor=Enciclopèdia Catalana |títol=L'Enciclopèdia |url=http://www.enciclopedia.cat/ |lloc=Barcelona |data=1999 |isbn= }} </ref>
 
=== Òxids ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Chromium(III)-oxide pigment.jpg|thumb|left|Òxid de crom (III)]]
</div>
[[Fitxer:Rubidium-oxide-unit-cell-3D-balls-B.png|thumb|Estructura cristal·lina de l'òxid de rubidi]]
{{Principal|Òxid}}
Els òxids inorgànics són combinació de l'[[oxigen]] amb qualsevol element, excepte el [[fluor]]. També reben aquest nom alguns [[epòxid]]s simples (com l'òxid d'[[etilè]]), formes oxidades dels [[nitril]]s i les [[amina|amines]] (com els òxids de nitril i els òxids d'amina) i algunes substàncies que contenen oxigen en llur estructura (com l'òxid de [[cacodil]] i l'òxid de [[mesitil]]), però són òxids orgànics.
 
Els òxids inorgànics poden ésser denominats anteposant al nom de l'element el mot ''òxid'', amb els prefixos numèrics escaients, o bé mitjançant el sistema de Stock.
 
Els òxids són generalment obtinguts per reacció directa de l'oxigen amb l'element a alta temperatura. També poden ésser obtinguts per descomposició tèrmica d'altres substàncies més complexes i per reacció amb l'oxigen de composts tals com [[hidrur]]s metàl·lics, [[sulfur]]s i [[halur]]s.<ref name=GEC />
 
* Amb els no metalls formen composts moleculars, volàtils, amb enllaç covalent. Exemples són el [[monòxid de carboni]], CO, el [[diòxid de carboni]], CO<sub>2</sub>, el [[diòxid de sofre]], SO<sub>2</sub>, el [[monòxid de nitrogen]], NO, el [[triòxid de dinitrogen]], N<sub>2</sub>O<sub>3</sub>, el [[pentaòxid de diclor]], Cl<sub>2</sub>O<sub>5</sub>, etc.
* Amb els metalls l'oxigen forma sòlids cristal·lins, amb enllaç, generalment iònic, degut a la baixa polarització de l'anió oxigen, O<sup>2-</sup>. Exemples són l'[[òxid de sodi]], Na<sub>2</sub>O, l'[[òxid de ferro (III)]], Fe<sub>2</sub>O<sub>3</sub>, l'[[òxid de calci]], CaO, l'[[òxid de zinc]], ZnO, etc. Tanmateix, els òxids de metalls d'alta valència són volàtils, amb enllaç amb marcat caràcter covalent.
 
Els òxids tenen un gran nombre d'aplicacions en la indústria (semiconductor, ciment, vidre, pintura, refractari).
 
=== Àcids ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Hydrochloric acid 05.jpg|thumb|left|Àcid clorhídric]]
</div>
[[Fitxer:Sulfuric-acid-Givan-et-al-1999-3D-balls.png|thumb|Molècula d'àcid sulfúric, H<sub>2</sub>SO<sub>4</sub>. En groc el sofre, en vermell els oxígens i en blanc els hidrogens]]
[[Fitxer:Nitric-acid-3D-balls-D.png|thumb|Molècula d'àcid nítric, HNO<sub>3</sub>. En blau el nitrogen, en vermell els oxígens i en blanc l'hidrogen]]
{{Principal|Àcid}}
* '''Hidràcids''': Els àcids que no presenten [[oxigen]] en la seva estructura s'anomenen [[hidràcid]]s. Són hidrurs de no metalls en dissolució aquosa. En les seves molècules l'[[hidrogen]] es troba enllaçat mitjançant un [[enllaç covalent]] a un [[àtom]] d'un [[element químic]] molt electronegatiu ([[halogen|halògens]], [[sofre]], [[seleni]] i [[tel·luri]]) per la qual cosa l'enllaç està molt polaritzat i es romp fàcilment en dissolució aquosa, donant lloc a la dissociació de l'àcid.
 
Els hidràcids més importants són:
[[Àcid fluorhídric]], HF<sub>(aq)</sub> -
[[àcid clorhídric]], HCl<sub>(aq)</sub> -
[[àcid bromhídric]], HBr<sub>(aq)</sub> -
[[àcid iodhídric]], HI<sub>(aq)</sub> -
[[àcid sulfhídric]], H<sub>2</sub>S<sub>(aq)</sub>
 
* '''Oxoàcids''': Els oxoàcids són composts inorgànics on un àtom central electronegatiu es troba enllaçat mitjançant [[enllaç covalent]] a diversos [[oxigen|oxígens]] que amb enllaços dobles i simples completant les valències de l'àtom central. Els oxígens que es troben enllaçats mitjançant un enllaç simple a l'àtom central s'enllacen també a un àtom d'[[hidrogen]]. Aquest enllaç està molt polaritzat la qual cosa fa que sigui bo de dissociar.
 
Oxoàcids més importants:[[Àcid arsènic]], H<sub>3</sub>AsO<sub>4</sub> - [[Àcid arseniós]], H<sub>2</sub>AsO<sub>3</sub> - [[Àcid bòric]], H<sub>3</sub>BO<sub>3</sub> - [[Àcid bròmic]], HBrO<sub>3</sub> - [[Àcid carbònic]], H<sub>2</sub>CO<sub>3</sub> - [[Àcid clòric]], HClO<sub>3</sub> - [[Àcid clorós]], HClO<sub>2</sub> - [[Àcid cròmic]], H<sub>2</sub>CrO<sub>4</sub> - [[Àcid fosfòric]], H<sub>3</sub>PO<sub>4</sub> - [[Àcid fosforós]], H<sub>3</sub>PO<sub>3</sub> - [[Àcid hipobromós]], HOBr(aq) - [[Àcid hipoclorós]], HOCl(aq) - [[Àcid hipofosforós]], H<sub>3</sub>PO<sub>2</sub> - [[Àcid iòdic]], HIO<sub>3</sub> - [[Àcid nítric]], HNO<sub>3</sub> - [[Àcid nitrós]], HNO<sub>2</sub> - [[Àcid perclòric]], HClO<sub>4</sub> - [[Àcid perdisulfúric]], H<sub>2</sub>S<sub>2</sub>O<sub>8</sub> - [[Àcid periòdic]], HIO<sub>4</sub> - [[Àcid permonosulfúric]], H<sub>2</sub>SO<sub>5</sub> - [[Àcid pirofosfòric]], H<sub>2</sub>P<sub>2</sub>O<sub>7</sub> - [[Àcid selènic]], H<sub>2</sub>SeO<sub>4</sub> - [[Àcid seleniós|Àcid selenós]], H<sub>2</sub>SeO<sub>3</sub> - [[Àcid silícic]], H<sub>4</sub>SiO<sub>4</sub> - [[Àcid sulfàmic]], NH<sub>2</sub>SO<sub>3</sub>H - [[Àcid sulfúric]], H<sub>2</sub>SO<sub>4</sub> - [[Àcid sulfurós]], H<sub>2</sub>SO<sub>3</sub> - [[Àcid tel·lúric]], H<sub>2</sub>TeO<sub>4</sub> - [[Àcid tel·lurós]], H<sub>2</sub>TeO<sub>3</sub>
 
* Aplicacions dels àcids inorgànics.
** '''Àcid sulfúric, H<sub>2</sub>SO<sub>4</sub>'''. L'àcid sulfúric és l'àcid que s'empra en major quantitat, s'empra en la indústria química per a la preparació d'altres àcids, de sulfats i de carbonats. En la producció de pintures, sulfonació de greixos, en la indústria tèxtil, en la refineria del [[petroli]], en la producció de [[ferro]] i [[acer]], en els [[acumulador de plom|acumuladors de plom]] i en la fabricació d'[[explosiu]]s.
** '''Àcid nítric, HNO<sub>3</sub>'''. L'àcid nítric s'empra en la fabricació d'explosius, [[colorant]]s, [[seda]] artificial, [[plàstic]]s, [[fertilitzant]]s i en la fabricació d'àcid sulfúric.
** '''Àcid clorhídric, HCl'''. S'empra en la indústria tèxtil, en la dels colorants, per a la neteja dels [[metall]]s en la indústria del [[galvanitzat]] i de l'[[estanyat]], per a la manufactura de [[filferro]]s, en el procés de [[gravat]], en la fabricació de [[dextrosa]], [[gelatina]] i [[sabó|sabons]], en la purificació d'arenes i argiles per a la fabricació de [[porcellana|porcellanes]] i en l'elaboració de [[clor]], clorurs i derivats.<ref name=Cuevas>{{ref-llibre |cognom=Cuevas |nom=A. |coautors=''et al.'' |títol=Química II |url=http://books.google.cat/books?id=i1H7p7WRUq0C&hl=ca |editorial=Umbral |lloc= |data= |isbn=9685607206 }}</ref>
 
=== Hidròxids ===
[[Fitxer:SodiumHydroxide.jpg|thumb|left|Hidròxid de sodi]]
[[Fitxer:Sodium-hydroxide-crystal-3D-vdW.png|thumb|Estructura cristal·lina de l'hidròxid de sodi, NaOH. En lila el sodis, en vermell els oxígens i en blanc els hidrògens]]
{{Principal|Hidròxid}}
Els hidròxids estan constituïts per anions [[hidroxil]], OH<sup>-</sup>, i cations metàl·lics. En augmentar la capacitat de [[Polarització electroquímica |polarització]] del [[catió]] s'accentua el caràcter parcialment [[enllaç covalent|covalent]] de l'enllaç metall-oxigen, i l'estabilitat de l'hidròxid disminueix. Els hidròxids dels elements més electropositius ([[alcalí|alcalins]], [[alcalinoterri]]s,...) poden fondre's sense descompondre's (els dels alcalins poden, fins i tot, vaporitzar-se). En canvi, no es coneixen hidròxids en molt alt estat d'oxidació.
 
Els alcalins són els únics solubles en aigua. Els més reactius són els alcalins i els alcalinoterris. La propietat més destacada és el caràcter [[base (química)|bàsic]], tant en [[dissolució]] aquosa com en estat fus.<ref name=Gutierrez>{{ref-llibre |cognom=Gutiérrez |nom=E |títol=Química inorgànica |editorial=Reverté |lloc= |data=1985 |isbn=84-291-7215-7 }} </ref>
 
=== Sals ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">[[Fitxer:Copper sulfate.jpg|thumb|left|Cristall de sulfat de coure (II) pentahidratat]]
</div>
[[Fitxer:Sodium-chloride-unit-cell-3D-balls-and-sticks.png|thumb|Estructura cristal·lina del clorur de sodi, NaCl. En verd els anions clorur, Cl<sup>-</sup> i en lila els cations sodi, Na<sup>+</sup>]]
[[Fitxer:Sphalerite-unit-cell-3D-balls.png|thumb|Estructura cristal·lina de la blenda de zinc, ZnS. En groc els anions sulfur, S<sup>2-</sup> i en gris els cations zinc, Zn<sup>2+</sup>]]
{{Principal|Sal (química)}}
Les sals són composts iònics formats per combinacions d'anions amb cations metàl·lics. Tenen les propietats característiques dels composts iònics: són sòlids cristal·lins de [[punt de fusió]] elevat, presenten conducció de l'[[electricitat]] en l'estat líquid i conductivitat electrolítica en llurs solucions aquoses. Això no obstant, hi ha tota una gradació en el caràcter covalent o iònic de l'enllaç, el qual depèn fonamentalment de la diferència d'[[electronegativitat]] i de grandària dels ions que constitueixen la sal. Dos exemples extrems són el [[fluorur de cesi]], CsF, que és totalment iònic, i el [[tetraclorur de titani]], TiCl<sub>4</sub>, que presenta un caràcter covalent molt accentuat. Quant a la solubilitat, les sals de caràcter iònic són generalment solubles en dissolvents de [[constant dielèctrica]] elevada, com és ara l'[[aigua]], a desgrat de les que presenten una [[energia reticular]] molt gran, mentre que les de tipus més covalent se solubilitzen en dissolvents apolars ([[tetraclorur de carboni]], etc.). D'altra banda, moltes sals iòniques formen [[hidrat]]s, la tendència a la formació dels quals és donada pel guany energètic que suposa la [[solvatació]], enfront de l'energia necessària per a trencar el reticle cristal·lí de la forma anhidra.
 
Segons llur constitució, les sals poden classificar-se en:
* '''Sals simples''': són les sals formades pel catió d'una base i l'anió d'un àcid amb l'estequiometria adequada, com el [[clorur de sodi]], NaCl, o el [[nitrat de potassi]] (KNO<sub>3</sub>). N'hi ha de dos tipus:
** Sals binàries. Són sals simples constituïdes per anions d'un sol element químic. Exemples: [[fluorur de sodi]], NaF, [[clorur de magnesi]], MgCl<sub>2</sub>, [[bromur de potassi]], KBr, [[iodur de plom (II)]], PbI<sub>2</sub>.
** Sals ternàries o oxisals. Són sals simples en les quals l'anió prové d'un [[oxoàcid]]. Exemples: [[nitrat d'argent]], AgNO<sub>3</sub>, [[dicromat de potassi]], K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, [[sulfat de ferro (III)]], Fe<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>.
* '''Sals àcides''': Són sals que contenen àtoms d'hidrogen àcids, com l'[[hidrògenocarbonat de sodi|hidrògencarbonat de sodi]], NaHCO<sub>3</sub>.
* '''Sals dobles''': Són sals que s'originen, en general, per cristal·lització de solucions que contenen mescles d'ions, com ara els [[alum]]s, i les [[oxisal]]s i [[hidroxisal]]s, conegudes genèricament com a sals bàsiques, en les quals intervenen oxocations o hidroxications, com l'[[oxiclorur de bismut]], BiClO, i l'[[hidroxiclorur de magnesi]], MgCl(OH).
 
Quant a la nomenclatura, les sals són anomenades esmentant primer l'anió i després el catió, amb els prefixos numèrics corresponents. La presència d'hidrogen àcid és indicada mitjançant el prefix ''hidrogen-'' anteposat al nom de l'anió, mentre que en la nomenclatura de les oxisals i hidroxisals són emprats els prefixos ''oxi-'' i ''hidroxi-'' anteposats al nom de l'anió.<ref name=GEC />
 
=== Complexos ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Sodium-nitroprusside-sample.jpg|thumb|left|Nitroprussiat de sodi]]
</div>
[[Fitxer:Diamminesilver(I)-3D-balls.png|thumb|Diaminplata (I). En cel la plata, en blau els nitrògens i en blanc els hidrògens]]
[[Fitxer:Hexaaquaaluminium(III)-3D-balls.png|thumb|left|Hexaaquaalumini. En rosa l'alumini, en vermell els oxígens que formen molècules d'aigua juntament els hidrògens en blanc]]
[[Fitxer:Nickel-carbonyl-3D-balls.png|thumb|Tetracarbonilniquel(II). En blau el níquel i formant carbonils, CO, en negre els carbonis i en vermell els oxígens]]
 
Un complex és un compost químic que conté un àtom o un ió central, generalment d'un [[metall de transició]], acceptador d'electrons, envoltat d'un grup d'ions o de molècules neutres (els [[lligand]]s), donadors d'electrons.
 
La càrrega elèctrica del complex és la suma algebraica de les càrregues de l'ió central i dels lligands iònics, i hi ha complexos neutres, catiònics o aniònics.
 
La teoria de la coordinació d'[[Alfred Werner]] (1893) donà la primera interpretació de la natura d'aquests composts i postulà per als elements metàl·lics una valència primària (avui designada com a "estat d'oxidació") i unes valències secundàries (avui, "índex de coordinació"), dirigides cap a posicions definides en l'espai, les quals valències, segons Sidgwick, són capaces de compartir parelles d'electrons aportats pels lligands i formar, amb aquests, enllaços covalents datius o coordinats. Amb la [[teoria d'enllaç de valència]] de [[Linus Pauling]] (1940), primerament, i amb les del [[teoria del camp cristal·lí|camp cristal·lí]] i del [[teoria del camp dels lligands|camp dels lligands]] (1951), després, hom aconseguí d'explicar bé la natura d'aquestes valències secundàries en funció dels [[orbital]]s buits disponibles de l'ió metàl·lic central, i les propietats estereoquímiques, magnètiques i òptiques dels complexos. El modern tractament per [[orbital molecular|orbitals moleculars]] permet d'afinar els últims detalls de la interpretació.
 
Segons que el lligand s'uneixi a l'ió central per un sol dels seus àtoms o per uns quants, és qualificat de monodentat, bidentat, etc., i, en general, de polidentat, que saturen més d'una posició de coordinació del metall i formen estructures cícliques que hom anomena de quelat. Segons el nombre d'ions centrals presents, el complex és mononuclear, dinuclear, etc., o polinuclear (són polinuclears, per exemple, els isopoliàcids i els heteropoliàcids i llurs sals). En alguns casos, els lligands contenen sistemes d'electrons π més o menys deslocalitzats, que es poden unir amb metalls formant els complexos π (com els de tipus sandvitx, com el [[ferrocè]]). També hi ha complexos dits de transferència de càrrega, que són d'enllaç dèbil, correntment moleculars, caracteritzats per passar, per absorció de llum visible, a un estat excitat amb una transferència de càrrega, que dóna lloc a un augment de la participació de la forma amb covalència dativa en l'[[híbrid de ressonància]].
 
Segons que l'equilibri de la reacció de formació d'un complex a partir dels seus constituents estigui més o menys desplaçat cap al complex, hom diu que aquest és més o menys estable; segons que les reaccions de substitució dels lligands siguin més o menys lentes, hom diu que el complex és inert o làbil.
 
Els complexos tenen formes geomètriques definides segons el nombre i el tipus dels orbitals de l'ió metàl·lic que participen en l'enllaç. Les més corrents són la quadrada (hibridació dsp<sup>2</sup>) i la tetraèdrica (hibridació sp<sup>3</sup>), per als metalls d'índex de coordinació 4, i l'octaèdrica (hibridació d<sup>2</sup>sp<sup>3</sup>) per als d'índex 6. Aquestes estructures permeten, en molts casos, l'existència d'[[isòmer]]s geomètrics i d'isòmers òptics.
 
Les propietats químiques dels complexos no són les de constituents separats, sinó unes altres de pròpies de la nova unitat. Si els complexos són estables i inerts, tals propietats desapareixen del tot; el procés és l'emmascarament, d'utilitat en la indústria i en l'[[anàlisi química]] per a evitar els efectes nocius de determinats metalls. La formació de complexos modifica les propietats acido-bàsiques dels constituents, en general exaltant la força àcida dels lligands; també modifica els [[potencial normal de reducció|potencials normals de reducció]], de manera que molts estats d'oxidació anormals dels metalls són estabilitzats. Aquesta propietat confereix a alguns complexos una gran activitat [[catàlisi|catalítica]], manifestada particularment en [[reacció d'oxidació-reducció|reaccions d'oxidació-reducció]], algunes d'elles d'interès biològic.
 
Molts complexos intervenen com a catalitzadors en fase homogènia, o com a intermedis en molts altres tipus de reaccions (per exemple, els catalitzadors de Ziegler i Natta per a la polimerització de l'[[etilè]] són complexos d'[[alumini]] i [[titani]]). L'interès [[bioquímica|bioquímic]] dels complexos és molt gran, car molts [[enzims]] són actius només en presència de traces d'ions metàl·lics, i una posició de coordinació al metall és el centre actiu d'aquells.
 
Els reactius orgànics més importants de la química analítica són lligands formadors de complexos, generalment quelats; els caracteritza llur selectivitat o especificitat i llur sensibilitat, llur solubilitat en solvents orgànics que en fa possible l'extracció, o llur coloració intensa que permet la determinació absorciomètrica de molts metalls.<ref name=GEC />
 
=== Organometàl·lics ===
<div style="float:left;margin-right:10px;margin-bottom:10px;margin-top:10px;text-align:center">
[[Fitxer:Photo of Ferrocene (powdered).JPG|thumb|left|Ferrocè]]
</div>
[[Fitxer:Ferrocene-3D-balls-B.png|thumb|Ferrocè. En lila el ferro, en negre els carbonis i en blanc els hidrògens]]
[[Fitxer:Wilkinson's-catalyst-3D-sticks.png|thumb|Catalitzador de Wilkinson. En el centre rodi, en verd clor, en ocre fòsfor, en negre carbonis que formen radicals fenil amb els hidrògens blancs]]
{{Principal|Compost organometàl·lic}}
S'anomenen composts organometàl·lics les combinacions en les quals existeix un enllaç entre àtoms metàl·lics i àtoms de carboni, corresponents a radicals o a molècules orgàniques. Si bé aquest tipus d'enllaços existeixen en els complexos (carbonils i cianus), la denominació de composts organometàl·lics s'aplica, de manera especial, a les combinacions en les quals els carbonis units a l'àtom de metall formen part de molècules orgàniques (radical etil, ciclopentadienil, anells aromàtics,...).<ref name=Gutierrez />
El primer compost organometàl·lic conegut fou el [[dietilzinc]] (CH<sub>3</sub>—CH<sub>2</sub>—Zn—CH<sub>2</sub>—CH<sub>3</sub>), aïllat el 1849 pel químic anglès [[Edward Frankland]]; d'aleshores ençà, hom n'ha sintetitzats un gran nombre, que comprèn gairebé tots els elements metàl·lics.
 
N'hi ha de dos tipus:
* els organometàl·lics purs, que contenen exclusivament radicals orgànics units al metall, i
* els mixts, que contenen alhora radicals orgànics i inorgànics units al metall.
 
Des del punt de vista del tipus d'enllaç, poden ésser classificats en:
* iònics, formats únicament pels metalls més electropositius, i
* covalents, entre els quals cal distingir els que presenten enllaços σ i els que presenten enllaços π.
 
La natura de l'enllaç metall-carboni té una gran influència sobre l'estabilitat d'aquests composts. Així, els iònics i els covalents de tipus σ solen ésser tèrmicament inestables i sensibles a l'[[oxidació]] i a la [[hidròlisi]], mentre que els covalents de tipus π presenten una estabilitat tèrmica més gran i són en molts casos inerts als agents abans esmentats. Els mètodes de preparació són d'una gran diversitat. Entre els més generals, per a elements dels grups principals, cal esmentar la reacció de derivats halogenats amb metalls, la reacció dels composts formats pel mètode anterior amb un metall o halogenur metàl·lic per a bescanviar el metall i l'addició d'hidrurs metàl·lics sobre dobles enllaços.
 
Pel que pertoca a les seves reaccions químiques, la presència d'un metall unit a carboni pot induir en aquest un comportament aniònic, com en els [[reactiu de Grignard|reactius de Grignard]], o catiònic, com en els complexos de tipus π de metalls de transició amb [[olefina|olefines]], i també afavorir la formació de radicals lliures, com en el [[tetraetilplom]]. També experimenten altres reaccions importants, com l'addició oxidativa, l'eliminació reductiva i transposicions intramoleculars. A més del gran interès teòric que presenten, centrat principalment en l'estudi de l'enllaç metall-carboni, propietats catalítiques i estabilització de molècules orgàniques de gran reactivitat, els composts organometàl·lics troben un gran nombre d'aplicacions en síntesi orgànica i en la indústria química. Des del punt de vista fisiològic, són en molts casos d'una gran toxicitat.<ref name=GEC />
 
== Vegeu també ==
* [[Llista de compostos químics]].
* [[Llista de compostos inorgànics]].
 
 
* [[Composició centesimal]].
 
== Referències ==
{{referències}}
 
== Enllaços externs ==
{{Commonscat}}
* [http://www.cas.org El registre CAS conté més de 50 milions de composts, la seva web duu un comptador que s'actualitza]. diàriament.
* [http://chemfinder.cambridgesoft.com/ Chemfinder]
* [http://www.rdchemicals.com/ R&D Chemicals]
* [http://chem.sis.nlm.nih.gov/chemidplus/ ChemIDplus]
* [http://pubchem.ncbi.nlm.nih.gov/ PubChem]
* [http://physchem.ox.ac.uk/MSDS/ Material Data Safety Sheets]
* Enllaços comercials:
** [http://www.sigmaaldrich.com/ Sigma Aldrich]
** [http://www.acros.com/ Acros Organics]
** [http://www.lancastersynthesis.com/ Lancaster]
 
{{1000 Ciència}}
{{Autoritat}}
{{ORDENA:Compost Quimic}}
[[Categoria:Compostos químics| ]]