Llei dels grans nombres: diferència entre les revisions

Contingut suprimit Contingut afegit
Ampliació via traducció (inacabada) de la versió anglesa. Edició en procés.
Robot estandarditza i catalanitza referències, catalanitza dates i fa altres canvis menors
Línia 32:
El matemàtic italià [[Gerolamo Cardano]] (1501–1576) va constatar, sense demostrar, que la precisió de les mesures estadístiques empíriques tendien a millorar amb el nombre d'assajos<ref>Mlodinow, L. ''The Drunkard's Walk.'' New York: Random House, 2008. p. 50.</ref> i es va formalitzar com a llei dels grans nombres. Una forma especial d'aquesta llei, per les variables aleatòries binàries) va ser demostrar primerament per [[Jacob Bernoulli]].<ref>Jakob Bernoulli, ''Ars Conjectandi: Usum & Applicationem Praecedentis Doctrinae in Civilibus, Moralibus & Oeconomicis'', 1713, Chapter 4, (Translated into English by Oscar Sheynin)</ref> Li va costar més de 20 anys desenvolupar una prova matemàtica suficientment rigorosa, que va ser publicada en la seva obra ''Ars Conjectandi'' (L'art de la conjentura) el 1713. El va anomenar el seu "Teorema daurat", però va ser conegut generalment amb el nom del "Teorema de Bernoulli", que no s'ha de confondre amb el [[Principi de Bernoulli]], referit al seu cosí [[Daniel Bernoulli]]. El 1837, [[Siméon Denis Poisson|S.D. Poisson]] el va desenvolupar més sota el nom "''la loi des grands nombres''" ("La llei dels grans nombres").<ref>Poisson names the "law of large numbers" (''la loi des grands nombres'') in: S.D. Poisson, ''Probabilité des jugements en matière criminelle et en matière civile, précédées des règles générales du calcul des probabilitiés'' (Paris, France: Bachelier, 1837), [https://books.google.com/books?id=uovoFE3gt2EC&pg=PA7#v=onepage p. 7]. He attempts a two-part proof of the law on pp. 139–143 and pp. 277 ff.</ref><ref>Hacking, Ian. (1983) "19th-century Cracks in the Concept of Determinism", ''Journal of the History of Ideas'', 44 (3), 455-475 {{jstor|2709176}}</ref> D'aleshores encà, es coneix pels dos noms, tot i que la "Llei dels grans nombres" és més freqüent.
 
Després que Benroulli i Poisson publiquessin els seus esforços, altres matemàtics van contribuir a refinar la llei, com [[Pafnuty Chebyshev|Chebyshev]],<ref>{{Cite journal ref-publicació| last1 cognom1= Tchebichef | first1 nom1= P. | title títol= Démonstration élémentaire d'une proposition générale de la théorie des probabilités | doi = 10.1515/crll.1846.33.259 | journal publicació= Journal für die reine und angewandte Mathematik | volume volum= 1846 | issue exemplar= 33 | pages pàgines= 259–267 | year any= 1846 | pmid = | pmc = | url = https://zenodo.org/record/1448850/files/article.pdf }}</ref> [[Andrey Markov|Markov]], [[Émile Borel|Borel]], [[Francesco Paolo Cantelli|Cantelli]] and [[Andrey Kolmogorov|Kolmogorov]] i [[Aleksandr Khinchin|Khinchin]]. Markov va demostrar que la llei es podia aplicar a variables aleatòries que no tinguessin una [[variància]] finita sota alguna altra hipòtesi més feble, i Khinchin va provar, el 1929, que si la sèrie consistia en variables aleatòries independents i idènticament distribuides, era suficient que el valor esperat existis per tal que la llei feble dels grans nombres fos veritat.<ref name=EncMath>{{cite ref-web|author1autor1=Yuri Prohorov|authorlink1enllaçautor1=Yuri Vasilyevich Prokhorov|titletítol=Law of large numbers|url=https://www.encyclopediaofmath.org/index.php/Law_of_large_numbers| website=Encyclopedia of Mathematics}}</ref> Com a conseqüència d'aquests nous estudis, van sorgir dos formes prominents de la Llei dels grans nombres. Una anomenada la llei "feble" i l'altra la llei "forta", en referència a dos formes diferents de la convergència de la mitjana cumulativa de mostres cap al valor infinit. Tal com s'explica més endavant, la forma forta implica la feble.{{sfn|Seneta|2013}}
 
==Formes==
Línia 48:
La hipòtesi de [[variància]] finita Var(''X''<sub>1</sub>) = Var(''X''<sub>2</sub>) = ... = ''σ''<sup>2</sup> < ∞ '''no és necessària'''. Una variància gran o infinita farà que la convergència sigui més lenta, però la llei dels grans nombres es manté de tota manera. Aquesta hipòtesi, però, sovint s'usa per tal de fer la demostració més fàcil i més curta.
 
La [[Independència estadística|independència]] mútua de les variables aleatòries pot ser substituïda per la independència parell a en ambdues versoins de la llei.<ref>{{cite journalref-publicació|last1cognom1=Etemadi|first1nom1=N.Z.|titletítol=An elementary proof of the strong law of large numbers|journalpublicació=Wahrscheinlichkeitstheorie Verw Gebiete|datedata=1981|volumevolum=55|issueexemplar=1|pagespàgines=119–122|doi=10.1007/BF01013465}}</ref>
 
La diferència entre la versió de la llei feble i la forta rau en la manera en què la convergència és definida.
Línia 86:
What this means is that the probability that, as the number of trials ''n'' goes to infinity, the average of the observations converges to the expected value, is equal to one.
 
The proof is more complex than that of the weak law.<ref>{{cite ref-web|url=http://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers/ |titletítol=The strong law of large numbers – What's new |publishereditor=Terrytao.wordpress.com |datedata= |accessdateconsulta=2012-06-09}}</ref> This law justifies the intuitive interpretation of the expected value (for Lebesgue integration only) of a random variable when sampled repeatedly as the "long-term average".
 
Almost sure convergence is also called strong convergence of random variables. This version is called the strong law because random variables which converge strongly (almost surely) are guaranteed to converge weakly (in probability). The strong law implies the weak law but not vice versa, when the strong law conditions hold the variable converges both strongly (almost surely) and weakly (in probability).
However the weak law is known to hold in certain conditions where the strong law does not hold and then the convergence is only weak (in probability).{{clarify|reason=Warning: This is ambiguous. By using the fuzzy word "may", it says that EITHER the weak law is known to hold under broader conditions than the strong law, OR the weak law is known to hold under certain conditions where the strong law is not known to hold, OR it is not known whether the weak law holds under broader conditions that the strong law. |date=November novembre 2016}}
 
<!--The reference provided for the following doesn't seem to say this:
There are different views among mathematicians whether the two laws could be unified to one law, thereby replacing the weak law.<ref name="Testing Statistical Hypotheses">{{cite book|url=https://books.google.com/books?id=-kzPBAAAQBAJ&pg=PA219&lpg=PA219#v=onepage&q=is%20of%20very%20limited%20interest%20and%20should%20be%20replaced%20by%20the%20more%20precise%20and%20more%20useful%20strong%20law%20of%20large%20numbers | title=Law of large numbers views }}</ref>
 
To date it has not been possible to prove that the strong law conditions are the same as those of the weak law.{{citation needed|date=March març 2016}}
-->
 
The strong law of large numbers can itself be seen as a special case of the [[Ergodic theory#Ergodic theorems|pointwise ergodic theorem]].
 
The strong law applies to independent identically distributed random variables having an expected value (like the weak law). This was proved by Kolmogorov in 1930. It can also apply in other cases. Kolmogorov also showed, in 1933, that if the variables are independent and identically distributed, then for the average to converge almost surely on ''something'' (this can be considered another statement of the strong law), it is necessary that they have an expected value (and then of course the average will converge almost surely on that).<ref name=EMStrong>{{cite ref-web|author1autor1=Yuri Prokhorov|titletítol=Strong law of large numbers|url=https://www.encyclopediaofmath.org/index.php/Strong_law_of_large_numbers|website=Encyclopedia of Mathematics}}</ref>
 
If the summands are independent but not identically distributed, then
Línia 117:
An example of a series where the weak law applies but not the strong law is when ''X<sub>k</sub>'' is plus or minus <math>\sqrt{k/\log\log\log k}</math> (starting at sufficiently large ''k'' so that the denominator is positive) with probability 1/2 for each.<ref name=EMStrong/> The variance of ''X<sub>k</sub>'' is then <math>k/\log\log\log k.</math> Kolmogorov's strong law does not apply because the partial sum in his criterion up to ''k=n'' is asymptotic to <math>\log n/\log\log\log n</math> and this is unbounded.
 
If we replace the random variables with Gaussian variables having the same variances, namely <math>\sqrt{k/\log\log\log k},</math> then the average at any point will also be normally distributed. The width of the distribution of the average will tend toward zero (standard deviation asymptotic to <math>1/\sqrt{2\log\log\log n}</math>), but for a given ε, there is probability which does not go to zero with ''n'' that the average sometime after the ''n''th trial will come back up to ε. Since this probability does not go to zero {{clarify|reason=How can we see this does not go to zero? |date=October octubre 2018}}, it must have a positive lower bound ''p''(ε), which means there is a probability of at least ''p''(ε) that the average will attain ε after ''n'' trials. It will happen with probability ''p''(ε)/2 before some ''m'' which depends on ''n''. But even after ''m'', there is still a probability of at least ''p''(ε) that it will happen. (This seems to indicate that ''p''(ε)=1 and the average will attain ε an infinite number of times.)
 
===Differences between the weak law and the strong law===
Línia 124:
The ''strong law'' shows that this [[almost surely]] will not occur. In particular, it implies that with probability 1, we have that for any {{nowrap|''ε'' > 0}} the inequality <math style="vertical-align:-.4em">|\overline{X}_n -\mu| < \varepsilon</math> holds for all large enough ''n''.<ref>{{harvtxt|Ross|2009}}</ref>
 
The strong law does not hold in the following cases, but the weak law does.<ref name="Weak law converges to constant">{{cite bookref-llibre|url=https://books.google.com/?id=K6t5qn-SEp8C&pg=PA432&lpg=PA432&q=%22even%20if%20the%20mean%20does%20not%20exist%22 | titletítol=Weak law converges to constant | isbn=9780387276052 | last1cognom1=Lehmann | first1nom1=Erich L | last2cognom2=Romano | first2nom2=Joseph P | datedata=2006-03-30 }}</ref><ref>{{cite ref-web|titletítol=A NOTE ON THE WEAK LAW OF LARGE NUMBERS FOR EXCHANGEABLE RANDOM VARIABLES|url=http://www.mathnet.or.kr/mathnet/kms_tex/31810.pdf|publishereditor=Dguvl Hun Hong and Sung Ho Lee}}</ref><ref>{{cite ref-web|titletítol=weak law of large numbers: proof using characteristic functions vs proof using truncation VARIABLES|url=https://math.stackexchange.com/q/266870 }}</ref>
 
1. Let X be an [[Exponential distribution|exponentially]] distributed random variable with parameter 1. The random variable <math>\sin(X)e^X X^{-1}</math> has no expected value according to Lebesgue integration, but using conditional convergence and interpreting the integral as a [[Dirichlet integral]], which is an improper [[Riemann integral]], we can say:
Línia 139:
 
:<math> F(x)=\frac{e}{-2x\ln(-x)},x \le -e </math>
:then it has no expected value, but the weak law is true.<ref>{{cite ref-web|last1cognom1=Mukherjee|first1nom1=Sayan|titletítol=Law of large numbers|url=http://www.isds.duke.edu/courses/Fall09/sta205/lec/lln.pdf|access-date=2014-06-28|archive-url=https://web.archive.org/web/20130309032810/http://www.isds.duke.edu/courses/Fall09/sta205/lec/lln.pdf|archive-date=2013-03-09|url-status=dead}}</ref><ref>{{cite ref-web|last1cognom1=J. Geyer|first1nom1=Charles|titletítol=Law of large numbers|url=http://www.stat.umn.edu/geyer/8112/notes/weaklaw.pdf}}</ref>
 
===Uniform law of large numbers===
Suppose ''f''(''x'',''θ'') is some [[Function (mathematics)|function]] defined for ''θ'' ∈ Θ, and continuous in ''θ''. Then for any fixed ''θ'', the sequence {''f''(''X''<sub>1</sub>,''θ''), ''f''(''X''<sub>2</sub>,''θ''), ...} will be a sequence of independent and identically distributed random variables, such that the sample mean of this sequence converges in probability to E[''f''(''X'',''θ'')]. This is the ''pointwise'' (in ''θ'') convergence.
 
The '''uniform law of large numbers''' states the conditions under which the convergence happens ''uniformly'' in ''θ''. If<ref>{{harvnb|Newey|McFadden|1994|loc=Lemma 2.4}}</ref><ref>{{cite journalref-publicació|doi=10.1214/aoms/1177697731|titletítol=Asymptotic Properties of Non-Linear Least Squares Estimators|yearany=1969|last1cognom1=Jennrich|first1nom1=Robert I.|journalpublicació=The Annals of Mathematical Statistics|volumevolum=40|issueexemplar=2|pagespàgines=633–643}}</ref>
 
# Θ is compact,
Línia 245:
==References==
{{refbegin}}
* {{cite book ref-llibre|author1autor1=Grimmett, G. R. |author2autor2=Stirzaker, D. R. | titletítol=Probability and Random Processes, 2nd Edition | publishereditorial=Clarendon Press, Oxford | yearany=1992 | isbn=0-19-853665-8}}
* {{cite book ref-llibre| authorautor=Richard Durrett | titletítol=Probability: Theory and Examples, 2nd Edition | publishereditorial=Duxbury Press | yearany=1995}}
* {{cite book ref-llibre| authorautor=Martin Jacobsen | publishereditorial= HCØ-tryk, Copenhagen | yearany=1992|titletítol=Videregående Sandsynlighedsregning (Advanced Probability Theory) 3rd Edition| isbn=87-91180-71-6}}
* {{ref-llibre| last cognom= Loève | first nom= Michel
* {{cite book
| title títol= Probability theory 1
| last = Loève | first = Michel
|any= 1977
| title = Probability theory 1
| year edició= 19774th
| publisher editorial= Springer Verlag
| edition = 4th
| publisher = Springer Verlag
| ref = CITEREFLo.C3.A8ve1977
}}
* {{ref-llibre| last1 cognom1= Newey | first1 nom1= Whitney K.
* {{cite book
| last2 cognom2= McFadden | first2 nom2= Daniel | authorlink2 enllaçautor2= Daniel McFadden
| last1 = Newey | first1 = Whitney K.
| title títol= Large sample estimation and hypothesis testing
| last2 = McFadden | first2 = Daniel | authorlink2 = Daniel McFadden
| title = Large sample estimation and hypothesis testing
| series = Handbook of econometrics, vol. IV, Ch. 36
| year any= 1994
| publisher editorial= Elsevier Science
| pages pàgines= 2111–2245
| ref = CITEREFNeweyMcFadden1994
}}
* {{ref-llibre|cognom= Ross |nom= Sheldon
* {{cite book
| last títol= Ross |A first =course in Sheldonprobability
|any= 2009
| title = A first course in probability
| year edició= 20098th
| publisher editorial= Prentice Hall press
| edition = 8th
| publisher = Prentice Hall press
| isbn = 978-0-13-603313-4
}}
* {{ref-llibre|cognom1= Sen |nom1= P. K
* {{cite book
| last1 cognom2= SenSinger | first1 nom2= PJ. KM.
| year any= 1993
| last2 = Singer | first2 = J. M.
| title títol= Large sample methods in statistics
| year = 1993
| publisher editorial= Chapman & Hall, Inc
| title = Large sample methods in statistics
| publisher = Chapman & Hall, Inc
| ref = CITEREFSenSinger1993
}}
* {{citationcitar ref|lastcognom=Seneta|firstnom=Eugene|titletítol=A Tricentenary history of the Law of Large Numbers| journalpublicació=Bernoulli| volumevolum=19| issueexemplar=4| pagespàgines=1088–1121| datedata=2013|doi=10.3150/12-BEJSP12|arxiv=1309.6488}}
 
{{refend}}