Distribució binomial: diferència entre les revisions

Contingut suprimit Contingut afegit
m Bot elimina espais sobrants
definicions
Línia 56:
* Una partícula es mou unidimensionalment amb probabilitat '' q '' de moure's cap enrere i '' 1-q '' de moure's cap endavant
 
La== sevaFunció [[funcióde densitat de probabilitat]] és:==
== Característiques analítiques ==
 
La probabilitat d'obtenir exactament <math> k\, \! </math> èxits en <math> n \, \! </math> assaigs(proves) independents de Bernouilli és donada per la seva [[funció de probabilitat]]:
La seva [[funció de probabilitat]] és:
<math> \! f (x) ={n \choose x}p^x (1-p)^{n-x}\, \! </math>
 
on <math> x\! f (k) ={n \{0,choose k}p^k (1, 2, -p)^{n-k}\dots, n \},! </math>
 
-
senton <math> k = \{0, 1, 2, \dots, n \} </math> i essent <math> \!{n \choose xk}= \frac{n !}{xk ! (n-xk) !}\, \! </math> és el '''coeficient binomial'''. És el nombre de combinacions de <math> n \, \! </math> ensobre <math> x k\, \! </math> (<math> n \, \! </math> elements presosagafats de de <math> x k\, \! </math> en <math> x k\, \! </math>). I d'aquí el nom de la distribució que estem estudiant.
 
== Mitjana i Variància d'una distribució binomial <math> X \sim B (n, p) \, </math> ==
 
== Propietats característiques ==
: <math> \mathbb{E}[X] = np \, </math>
: <math> \text{Var}[X] = np (1-p) \, </math>
 
Cumulative distribution function===
 
The [[cumulative distribution function]] can be expressed as:
 
:<math>F(k;n,p) = \!Pr(X f\le (xk) = \sum_{ni=0}^{\lfloor k \rfloor} {n\choose xi}p^x i(1-p)^{n-xi}\, \! </math>
 
where <math>\lfloor k\rfloor</math> is the "floor" under ''k'', i.e. the [[greatest integer]] less than or equal to ''k''.
 
It can also be represented in terms of the [[regularized incomplete beta function]], as follows:<ref>{{cite book |last=Wadsworth |first=G. P. |title=Introduction to Probability and Random Variables |year=1960 |publisher=McGraw-Hill |location=New York |page=[https://archive.org/details/introductiontopr0000wads/page/52 52] |url=https://archive.org/details/introductiontopr0000wads |url-access=registration }}</ref>
 
:<math>\begin{align}
F(k;n,p) & = \Pr(X \le k) \\
&= I_{1-p}(n-k, k+1) \\
& = (n-k) {n \choose k} \int_0^{1-p} t^{n-k-1} (1-t)^k \, dt.
\end{align}</math>
 
which is equivalent to the [[cumulative distribution function]] of the [[F-distribution|{{mvar|F}}-distribution]]:<ref>Jowett G H (1963), The Relationship Between the Binomial and F Distributions, Journal of the Royal Statistical Society D, 13, 55-57.</ref>
 
:<math>F(k;n,p) = F_{F\text{-distribution}}\left(x=\frac{1-p}{p}\frac{k+1}{n-k};d_1=2(n-k),d_2=2(k+1)\right).</math>
 
Some closed-form bounds for the cumulative distribution function are given [[#Tail bounds|below]].
 
===Example===
 
Suppose a [[fair coin|biased coin]] comes up heads with probability 0.3 when tossed. The probability of seeing exactly 4 heads in 6 tosses is
 
:<math>f(4,6,0.3) = \binom{6}{4}0.3^4 (1-0.3)^{6-4}= 0.059535.</math>
 
== Properties ==
===Expected value and variance===
 
If ''X'' ~ ''B''(''n'', ''p''), that is, ''X'' is a binomially distributed random variable, n being the total number of experiments and p the probability of each experiment yielding a successful result, then the [[expected value]] of ''X'' is:<ref>See [https://proofwiki.org/wiki/Expectation_of_Binomial_Distribution Proof Wiki]</ref>
 
:<math> \operatorname{E}[X] = np.</math>
 
This follows from the linearity of the expected value along with fact that {{mvar|X}} is the sum of {{mvar|n}} identical Bernoulli random variables, each with expected value {{mvar|p}}. In other words, if <math>X_1, \ldots, X_n</math> are identical (and independent) Bernoulli random variables with parameter {{mvar|p}}, then <math>X = X_1 + \cdots + X_n</math> and
:<math>\operatorname{E}[X] = \operatorname{E}[X_1 + \cdots + X_n] = \operatorname{E}[X_1] + \cdots + \operatorname{E}[X_n] = p + \cdots + p = np.</math>
 
The [[variance]] is:
:<math> \operatorname{Var}(X) = np(1 - p).</math>
 
This similarly follows from the fact that the variance of a sum of independent random variables is the sum of the variances.
 
===Higher moments===
The first 6 central moments are given by
:<math>\begin{align}
\mu_1 &= 0, \\
\mu_2 &= np(1-p),\\
\mu_3 &= np(1-p)(1-2p),\\
\mu_4 &= np(1-p)(1+(3n-6)p(1-p)),\\
\mu_5 &= np(1-p)(1-2p)(1+(10n-12)p(1-p)),\\
\mu_6 &= np(1-p)(1-30p(1-p)(1-4p(1-p))+5np(1-p)(5-26p(1-p))+15n^2 p^2 (1-p)^2).
\end{align}</math>
 
===Mode===
 
== Relacions amb altres variables aleatòries ==