Combinatòria: diferència entre les revisions

138 bytes afegits ,  fa 4 mesos
+ ref.
(+ ref.)
(+ ref.)
La '''combinatòria''' és una branca de les [[matemàtiques]] pures que s'ocupa de l'estudi d'[[Objecte discret|objectes discrets]] (i normalment també finits). Una part de la combinatòria inclou el "comptar" el nombre d'objectes que satisfan un criteri (combinatòria enumerativa), decidir quan aquest criteri es compleix, i construir i analitzar els objectes que compleixen el criteri.<ref>{{Ref-web|títol=cursos:curriculum:eso_btx:dsma:modul_6:practica_2 [Formació del professorat]|url=https://ateneu.xtec.cat/wikiform/wikiexport/cursos/curriculum/eso_btx/dsma/modul_6/practica_2|consulta=2022-01-17}}</ref><ref>{{Ref-web|títol=ÍNDICE|url=http://recursostic.educacion.es/descartes/web/materiales_didacticos/Combinatoria/indice.htm|consulta=2022-01-17}}</ref>
 
Una de les àrees més antiga i més accessible de la combinatòria és la [[teoria de grafs]].<ref>{{Ref-web|títol=combinatorics {{!}} mathematics {{!}} Britannica|url=https://www.britannica.com/science/combinatorics|consulta=2022-01-17|llengua=en}}</ref><ref>{{Ref-web|títol=Combinatorics|url=https://mathworld.wolfram.com/|consulta=2022-01-17|llengua=en|nom=Eric W.|cognom=Weisstein}}</ref>
 
Hi ha molts patrons i [[Teorema|teoremes]] relacionats amb l'estructura d'un conjunt combinatori. Aquests normalment se centren en la partició (combinació) o partició ordenada ([[permutació]]) d'un [[conjunt]]. Un exemple senzill és saber quantes ordenacions es poden fer d'una [[Baralla de cartes|baralla]] de 52 cartes. La resposta és 52! (52 [[factorial]]), que aproximadament dona 8,0658·10<sup>67</sup>.
49.251

modificacions