Teorema dels quatre quadrats: diferència entre les revisions

cap resum d'edició
mCap resum de modificació
Cap resum de modificació
[[Srinivāsa Rāmānujan|Rāmānujan]] va donar la solució general, demostrant que si assumim, sense pèrdua de generalitat, que <math>a \leq b \leq c \leq d</math>, llavors hi han exactament 54 opcions possibles per ''a'', ''b'', ''c'', i ''d'', tal que l'equació és soluble en nombres enters <math>x_1, x_2, x_3, x_4</math> per a tota ''n''. De fet, Ramanujan va catalogar una 55ena possibilitat <math>a=1</math>, <math>b=2</math>, <math>c=5</math>, <math>d=5</math>, però en aquest cas l'equació no és resoluble si <math>n=15</math>.
 
[[Categoria: AritmèticaTeoria de nombres]]
 
[[de:Vier-Quadrate-Satz]]
15.103

modificacions