Mètode de Halley: diferència entre les revisions

Contingut suprimit Contingut afegit
m bot preprocessant article previ a la traduccioo automatica
m traducció automàtica feta a petició de Usuari Discussió:Gomà pendent de revisió per l'usuari
Línia 1:
{{Traducció|en|Halley's method}}
In NUMERICAL ANALYSIS , ((((( Halley's method ))))) is a ROOT-FINDING ALGORITHM used for functions of one real variable with a continuous second derivative , i.e. C<SUP>2</SUP> functions. It is named after its inventor EDMOND HALLEY who also discovered HALLEY'S COMET. ..
In [[numerical analysis]], '''Halley's method''' is a [[root-finding algorithm]] used for functions of one real variable with a continuous second derivative, i.e. [[Differentiability class|C<sup>2</sup>]] functions. It is named after its inventor [[Edmond Halley]] who also discovered [[Halley's Comet]].
..
 
The algorithm is second in the class of HOUSEHOLDER'S METHODS , right after the NEWTON'S METHOD. Like the latter it produces iteratively a sequence of approximations to the root , their RATE OF CONVERGENCE to the root is cubic. Multidimensional versions of this method exist. ..
En L'[[anàlisi numèrica]] '''el mètode d'Halley''' és un [[algorisme]] de DESCOBRIMENT d'ARREL fa servirva per a funcions d'una variable real amb un segon derivat continu, i.e. funcions de [[C<sup>2</sup>]]. Se li posa el nom del seu inventor [[Edmond Halley|Edmond Halley]] que també descobria [[Cometa Halley|Cometa D'halley's]].
..
 
(==) Method (==) ..
 
..
 
Like any root-finding method , Halley's method is a numerical algorithm for solving the nonlinear equation &fnof ;(((( x )))) = 0. In this case , the function &fnof ; has to be a function of one real variable. The method consists of a sequence of iterations: ..
The algorithm is second in the class of [[Householder's method]]s, right after the [[Newton's method]]. Like the latter it produces iteratively a sequence of approximations to the root, their [[rate of convergence]] to the root is cubic. Multidimensional versions of this method exist.
..
 
: <math>x_{n+1} = x_n - \frac {2 f(x_n) f'(x_n)} {2 {[f'(x_n)]}^2 - f(x_n) f''(x_n)} </math> ..
L'algorisme és segon en la classe dels [[Mètodes d'householder]], bé després del [[Mètode de Newton|Mètode]] del NEWTON. Com l'últim això produeix iterativament una seqüència d'aproximacions a l'arrel, la seva [[proporció de convergència]] a l'arrel és cúbica. Les versions pluridimensionals d'aquest mètode existeixen.
..
 
beginning with an initial guess (( x )) <sub>0</sub>. ..
 
..
 
If &fnof ; is a thrice continuously differentiable function and (( a )) is a zero of &fnof ; but not of its derivative , then , in a neighborhood of (( a )) , the iterates (( x )) <sub>(( n )) </sub> satisfy: ..
==Method==
..
 
: <math> .3. x_{n+1} - a .3. \le K \cdot { .3. x_n - a .3. }^3 ,\text{ for some }K > 0.\!</math> ..
== Mètode ==
..
 
This means that the iterates converge to the zero if the initial guess is sufficiently close , and that the convergence is cubic. ..
 
..
 
(==) Derivation (==) ..
Like any root-finding method, Halley's method is a numerical algorithm for solving the nonlinear equation &fnof;(''x'') = 0. In this case, the function &fnof; has to be a function of one real variable. The method consists of a sequence of iterations:
Consider the function ..
 
..
Com qualsevol mètode de descobriment d'arrel, el mètode d'Halley és un algorisme numèric per resoldre l'equació no lineal ƒ(''x'') = 0. En aquest cas, la funció ƒ ha de ser una funció d'una variable real. El mètode consta d'una seqüència d'iteracions:
: <math>g(x) = \frac {f(x)} {\sqrt{ .3. f'(x) .3. }}.</math> ..
 
..
 
Any root of &fnof ; which is (( not )) a root of its derivative is a root of (( g )) ; and any root of (( g )) is a root of &fnof ;. Applying NEWTON'S METHOD to (( g )) gives ..
 
..
: <math>x_{n+1} = x_n - \frac {g2 f(x_n) f'(x_n)} {g2 {[f'(x_n)]}^2 - f(x_n) f''(x_n)} </math> ..
 
..
 
with ..
 
..
beginning with an initial guess ''x''<sub>0</sub>.
: <math>g'(x) = \frac {2 {[f'(x)]}^2 - f(x) f''(x)} {2 f'(x) \sqrt{ .3. f'(x) .3. }} , </math> ..
 
..
començant amb una suposició inicial ''x'' <sub>0</sub>.
and the result follows. Notice that if &fnof ;'(((( c )))) = 0 , then one cannot apply this at (( c )) because (( g )) (((( c )))) would be undefined. ..
 
..
 
(==) Cubic convergence (==) ..
 
Suppose (( a )) is a root of (( f )) but not of its derivative. And suppose that the third derivative of (( f )) exists and is continuous in a neighborhood of (( a )) and (( x )) <sub>(( n )) </sub> is in that neighborhood. Then TAYLOR'S THEOREM implies: ..
If &fnof; is a thrice continuously differentiable function and ''a'' is a zero of &fnof; but not of its derivative, then, in a neighborhood of ''a'', the iterates ''x''<sub>''n''</sub> satisfy:
..
 
: <math>0 = f(a) = f(x_n) + f'(x_n) (a - x_n) + \frac{f(( (x_n)}{2} (a - x_n)^2 + \frac{f )) '(\xi)}{6} (a - x_n)^3</math> ..
Si ƒ és un tres vegades contínuament funció diferenciable i ''un'' és un zero de ƒ però no del seu derivat, llavors, en un barri de ''un'', els iterates ''x'' <sub>''n'' </sub> satisfer:
..
 
and also ..
 
..
 
: <math>0 = f(a) = f(x_n) + f'(x_n) (a - x_n) + \frac{f''(\eta)}{2} (a - x_n)^2 ,</math> ..
:<math>| x_{n+1} - a | \le K \cdot {| x_n - a |}^3,\text{ for some }K > 0.\!</math>
..
 
where &xi ; and &eta ; are numbers lying between (( a )) and (( x )) <sub>(( n )) </sub>. Multiply the first equation by <math>2 f'(x_n)\!</math> and subtract from it the second equation times <math>f''(x_n) (a - x_n)\!</math> to give: ..
 
..
 
: <math> ..
This means that the iterates converge to the zero if the initial guess is sufficiently close, and that the convergence is cubic.
\begin{align} ..
 
0 & {} = 2 f(x_n) f'(x_n) + 2 [f'(x_n)]^2 (a - x_n) \\ ..
Això significa que els iterates convergeixin al zero si la suposició inicial és suficientment propera, i que la convergència sigui cúbica.
& {} + f'(x_n) f(( (x_n) (a - x_n)^2 + \frac{f'(x_n) f )) '(\xi)} {3} (a - x_n)^3 \\ ..
 
& {} - f(x_n) f(( (x_n) (a - x_n) - f'(x_n) f )) (x_n) (a - x_n)^2 \\ ..
 
& {} - \frac{f(( (x_n) f )) (\eta)} {2} (a - x_n)^3. ..
 
\end{align} ..
==Derivation==
</math> ..
 
..
== Derivació ==
Canceling <math>f'(x_n) f''(x_n) (a - x_n)^2\!</math> and re-organizing terms yields: ..
Consider the function
..
 
: <math> ..
Consideri la funció
\begin{align} ..
 
0 = 2 f(x_n) f'(x_n) &+ \big(2 [f'(x_n)]^2 - f(x_n) f''(x_n) \big) (a - x_n) \\ ..
 
&+ \left( \frac{f'(x_n) f(( '(\xi)} {3} - \frac{f )) (x_n) f''(\eta)} {2} \right) (a - x_n)^3. ..
 
\end{align} ..
:<math>g(x) = \frac {f(x)} {\sqrt{|f'(x)|}}.</math>
</math> ..
 
..
 
Put the second term on the left side and divide through by <math> 2 [f'(x_n)]^2 - f(x_n) f''(x_n) </math> to get: ..
 
..
Any root of &fnof; which is ''not'' a root of its derivative is a root of ''g''; and any root of ''g'' is a root of &fnof;. Applying [[Newton's method]] to ''g'' gives
: <math> ..
 
a - x_n = \frac{- 2 f(x_n) f'(x_n)}{2 [f'(x_n)]^2 - f(x_n) f''(x_n)} ..
Qualsevol arrel de ƒ que és ''no'' una arrel del seu derivat és una arrel de ''g''; i qualsevol arrel de ''g'' és una arrel de ƒ. El [[Mètode de Newton|Mètode]] del NEWTON que s'aplica a ''g'' dóna
- \frac{2 f'(x_n) f(( '(\xi) - 3 f )) (x_n) f(( (\eta)} {6(2 [f'(x_n)]^2 - f(x_n) f )) (x_n))} (a - x_n)^3. ..
 
</math> ..
 
..
 
Thus: ..
:<math>x_{n+1} = x_n - \frac {g(x_n)} {g'(x_n)}</math>
..
 
: <math> ..
 
a - x_{n+1} = ..
 
- \frac{2 f'(x_n) f(( '(\xi) - 3 f )) (x_n) f(( (\eta)} {12 [f'(x_n)]^2 - 6 f(x_n) f )) (x_n)} (a - x_n)^3. ..
with
</math> ..
 
..
amb
The limit of the coefficient on the right side as (( x )) <sub>(( n )) </sub> approaches (( a )) is: ..
 
..
 
: <math> ..
 
- \frac{2 f'(a) f(( '(a) - 3 f )) (a) f''(a)} {12 [f'(a)]^2}. ..
:<math>g'(x) = \frac {2 {[f'(x)]}^2 - f(x) f''(x)} {2 f'(x) \sqrt{|f'(x)|}}, </math>
</math> ..
 
..
 
If we take (( K )) to be a little larger than the absolute value of this , we can take absolute values of both sides of the formula and replace the absolute value of coefficient by its upper bound near (( a )) to get: ..
 
..
and the result follows. Notice that if &fnof;'(''c'') = 0, then one cannot apply this at ''c'' because ''g''(''c'') would be undefined.
: <math> .3. a - x_{n+1} .3. \leq K .3. a - x_n .3. ^3</math> ..
 
..
i el resultat segueix. Avís que si &fnof'; (''circa'') = 0, llavors un no pot aplicar això a ''circa'' perquè ''g'' (''circa'') seria indefinit.
which is what was to be proved. ..
 
..
 
(==) References (==) ..
 
* T.R. Scavo and J.B. Thoo , On the geometry of Halley's method. (( American Mathematical Monthly )) , ((((( 102 ))))):5 (1995) , pp. 417–426. ..
==Cubic convergence==
* This article began as a translation from [http://fr.wikipedia.org/w/index.php?title=Itération_de_Halley&oldid=11673690 the equivalent article in French Wikipedia] , retrieved 22 January 2007. ..
 
..
(==) Externalconvergència linksCúbica (==) ..
Suppose ''a'' is a root of ''f'' but not of its derivative. And suppose that the third derivative of ''f'' exists and is continuous in a neighborhood of ''a'' and ''x''<sub>''n''</sub> is in that neighborhood. Then [[Taylor's theorem]] implies:
* {{ MathWorld .3. urlname=HalleysMethod .3. title=Halley's method}} ..
 
* [http://math.fullerton.edu/mathews/n2003/Halley'sMethodMod.html Halley's Method by John H. Mathews] ..
Suposi ''un'' és una arrel de ''f'' però no del seu derivat. I suposi que el tercer derivat de ''f'' existeix i és continu en un barri de ''un'' i ''x'' <sub>''n'' </sub> és en aquell barri. Llavors [[Teorema de Taylor|El teorema de taylor]] implica:
* (( [http://numbers.computation.free.fr/Constants/Algorithms/newton.html Newton's method and high order iterations] )) , Pascal Sebah and Xavier Gourdon , 2001 (the site has a link to a Postscript version for better formula display) ..
 
..
 
[[Category:Root-finding algorithms]] ..
 
..
:<math>0 = f(a) = f(x_n) + f'(x_n) (a - x_n) + \frac{f''(x_n)}{2} (a - x_n)^2 + \frac{f'''(\xi)}{6} (a - x_n)^3</math>
[[de:Halley-Verfahren]] ..
 
[[fr:Itération de Halley]] ..
 
[[pl:Metoda Halleya]] ..
 
paraulesenllacos ..
and also
..
 
NUMERICAL ANALYSIS ..
i també
..
 
ROOT-FINDING ALGORITHM ..
 
..
 
C<SUP>2</SUP> ..
:<math>0 = f(a) = f(x_n) + f'(x_n) (a - x_n) + \frac{f''(\eta)}{2} (a - x_n)^2,</math>
..
 
EDMOND HALLEY ..
 
..
 
HALLEY'S COMET ..
where &xi; and &eta; are numbers lying between ''a'' and ''x''<sub>''n''</sub>. Multiply the first equation by <math>2 f'(x_n)\!</math> and subtract from it the second equation times <math>f''(x_n) (a - x_n)\!</math> to give:
..
 
HOUSEHOLDER'S METHODS ..
on ξ; i η; els nombres estan sent entre ''un'' i ''x'' <sub>''n'' </sub>. Multipliqui la primera equació per <math>2 f'(x_n)\!</math> i resti'n les segones vegades d'equació <math>f''(x_n) (un - x_n)\!</math> per cedir:
..
 
NEWTON'S METHOD ..
 
..
 
RATE OF CONVERGENCE ..
:<math>
..
\begin{align}
NEWTON'S METHOD ..
0 & {} = 2 f(x_n) f'(x_n) + 2 [f'(x_n)]^2 (a - x_n) \\
..
& {} + f'(x_n) f''(x_n) (a - x_n)^2 + \frac{f'(x_n) f'''(\xi)} {3} (a - x_n)^3 \\
TAYLOR'S THEOREM ..
& {} - f(x_n) f''(x_n) (a - x_n) - f'(x_n) f''(x_n) (a - x_n)^2 \\
& {} - \frac{f''(x_n) f''(\eta)} {2} (a - x_n)^3.
\end{align}
</math>
 
 
 
Canceling <math>f'(x_n) f''(x_n) (a - x_n)^2\!</math> and re-organizing terms yields:
 
Anul·lant <math>f'(x_n) f''(x_n) (un - x_n)^2\!</math> i produccions de termes que es reorganitzen:
 
 
 
:<math>
\begin{align}
0 = 2 f(x_n) f'(x_n) &+ \big(2 [f'(x_n)]^2 - f(x_n) f''(x_n) \big) (a - x_n) \\
&+ \left( \frac{f'(x_n) f'''(\xi)} {3} - \frac{f''(x_n) f''(\eta)} {2} \right) (a - x_n)^3.
\end{align}
</math>
 
 
 
Put the second term on the left side and divide through by <math> 2 [f'(x_n)]^2 - f(x_n) f''(x_n) </math> to get:
 
Opció de venda el segon qualificar a l'esquerra costat i dividir-se completament per <math> 2 [f'(x_n)]^2 - f(x_n) f''(x_n) </math> per aconseguir:
 
 
 
:<math>
a - x_n = \frac{- 2 f(x_n) f'(x_n)}{2 [f'(x_n)]^2 - f(x_n) f''(x_n)}
- \frac{2 f'(x_n) f'''(\xi) - 3 f''(x_n) f''(\eta)} {6(2 [f'(x_n)]^2 - f(x_n) f''(x_n))} (a - x_n)^3.
</math>
 
 
 
Thus:
 
Així:
 
 
 
:<math>
a - x_{n+1} =
- \frac{2 f'(x_n) f'''(\xi) - 3 f''(x_n) f''(\eta)} {12 [f'(x_n)]^2 - 6 f(x_n) f''(x_n)} (a - x_n)^3.
</math>
 
 
 
The limit of the coefficient on the right side as ''x''<sub>''n''</sub> approaches ''a'' is:
 
El límit del coeficient a la dreta costat com ''x'' <sub>''n'' aproximacions de </sub> ''un'' és:
 
 
 
:<math>
- \frac{2 f'(a) f'''(a) - 3 f''(a) f''(a)} {12 [f'(a)]^2}.
</math>
 
 
 
If we take ''K'' to be a little larger than the absolute value of this, we can take absolute values of both sides of the formula and replace the absolute value of coefficient by its upper bound near ''a'' to get:
 
Si anem ''K'' ser una bit més gran que el valor absolut d'això, podem prendre valors absoluts dels dos costats de la fórmula i canviar el valor absolut de coeficient per la seva fita superior a prop ''un'' aconseguir:
 
 
 
:<math>|a - x_{n+1}| \leq K |a - x_n|^3</math>
 
 
 
which is what was to be proved.
 
quin és què s'havia de demostrar.
 
 
 
== References ==
 
== Referències ==
* T.R. Scavo and J.B. Thoo, On the geometry of Halley's method. ''American Mathematical Monthly'', '''102''':5 (1995), pp. 417–426.
 
* T.R. Scavo i J.B. Thoo, Sobre la geometria del mètode d'Halley. ''americà Matemàtic Mensualment'', '''102''':5 (1995), pàg. 417-426.
*This article began as a translation from [http://fr.wikipedia.org/w/index.php?title=Itération_de_Halley&oldid=11673690 the equivalent article in French Wikipedia], retrieved 22 January 2007.
 
* Aquest article començava com a traducció de [http://fr.wikipedia.org/w/index.php?title=Itération_de_Halley&oldid=11673690 l'article equivalent a French Wikipedia], recuperat 22 de gener de 2007.
 
 
 
==External links==
 
== enllaços Externs ==
* {{MathWorld|urlname=HalleysMethod|title=Halley's method}}
 
* {{MathWorld|urlname=HalleysMethod|title=Halley's method}}
*[http://math.fullerton.edu/mathews/n2003/Halley'sMethodMod.html Halley's Method by John H. Mathews]
 
* [el Mètode de http://math.fullerton.edu/mathews/n2003/Halley'sMethodMod.html Halley per John H. Mathews]
* ''[http://numbers.computation.free.fr/Constants/Algorithms/newton.html Newton's method and high order iterations]'', Pascal Sebah and Xavier Gourdon, 2001 (the site has a link to a Postscript version for better formula display)
 
* ''[el mètode de Newton de http://numbers.computation.free.fr/Constants/Algorithms/newton.html i iteracions d'ordre altes]'', Pascal Sebah i Xavier Gourdon, 2001 (el lloc té un enllaç a una versió de Postdata per a millor exhibició de fórmula)
 
 
 
[[Category:Root-finding algorithms]]
 
[[de:Halley-Verfahren]]
[[fr:Itération de Halley]]
[[pl:Metoda Halleya]][[en:Halley's method]]