Diferència entre revisions de la pàgina «Funció φ d'Euler»

m
m (r2.7.2) (Robot modifica: de:Eulersche Phi-Funktion)
Algebraicament les congruències mòdul vénen representades per:
:<math>(\mathbb{Z})/(\mathbb{Z}*n)=\mathbb{Z}_n</math>
En la pràctica però, la construcció de les congruències mòdul es fa a partir de l'anomenat [[Ròssec (Aritmètica)|ròssec]] de la divisió de qualsevol nombre per l'índex de la congruència ''n''.
 
La congruència mòdul, en tant que conjunt, segueix les propietats associativa, existència d'element neutre i existència d'element invers (aquesta darrera propietat només s'acomplirà per a certs elements del conjunt en el cas del segon operador: el producte habitual). Cal remarcar que la propietat d'existència d'element invers és el rovell de l'ou de tot el problema, ja que el comportament del conjunt quedarà determinat per l'element invers.
17.631

modificacions