En matemàtiques, una matriu quadrada complexa U és unitària si

on I és la matriu identitat i U * és la transposada conjugada de U.

L'anàloga real d'una matriu unitària és una matriu ortogonal.

Propietats

modifica

Per qualsevol matriu unitària U, el següent és cert:

  • Donats dos vectors complexos x i y, la multiplicació per U preserva el seu producte escalar; és a dir,
 .
 
on V és unitària i D és diagonal i unitària.
  •  .
  • Els seus espais propis són ortogonals.
  • Per qualsevol enter n, el conjunt de totes les matrius unitàries n per n juntament amb el producte matricial forma un grup, anomenat grup unitari U(n).
  • Qualsevol matriu quadrada amb la norma euclidiana unitària és la mitjana de dues matrius unitàries[1]

Condicions equivalents

modifica

Si U és una matriu complexa quadrada, llavors les següents condicions són equivalents:

  1. U és unitària
  2. U * és unitària
  3. U és invertible, amb U –1=U *
  4. les columnes de U formen una base ortonormal de   respecte al producte escalar usual
  5. les files de U formen una base ortonormal de   respecte al producte escalar usual
  6. U és una isometria respecte a la norma usual
  7. U és una matriu normal amb valors propis dins la circumferència unitat

Referències

modifica
  1. Li, Chi-Kwong; Poon, Edward «Additive Decomposition of Real Matrices». Linear and Multilinear Algebra, 50, 4, 01-01-2002, pàg. 321–326. DOI: 10.1080/03081080290025507.

Vegeu també

modifica

Enllaços externs

modifica