Ortobicúpula quadrada

En geometria, la ortobicúpula quadrada es pot construir enganxant dues cúpules quadrades per les cares octogonals. És un dels noranta-dos sòlids de Johnson (J28). Té simetria D4h.

Infotaula de polítopOrtobicúpula quadrada
Square orthobicupola.png
J28 square orthobicupola wireframe.stl
Model 3D
TipusSòlid de Johnson
Forma de les caresTriangles equilàters i
quadrats
Cares per vèrtex4
Vèrtexs per cara3 i 4
SimetriaD4h
Dual-
PropietatsConvex
Elements
Cares18
Arestes32
Vèrtexs16
Característica2
Més informació
MathWorldSquareOrthobicupola Modifica el valor a Wikidata

Els 92 sòlids de Johnson van ser descrits 1966 per Norman Johnson i els va numerar. No va demostrar que no n'existia més que 92, però va conjecturar que no n'hi havia d'altres. Victor Zalgaller el 1969 va demostrar que la llista de Johnson era completa. S'utilitzen els noms i l'ordre donats per Johnson, i se'ls nota Jxx on xx és el nombre donat per Jonson.

Desenvolupament plaModifica

 
Desenvolupament pla de la ortobicúpula quadrada


ReferènciesModifica

  • Norman W. Johnson, "Convex Solids with Regular Faces", Canadian Journal of Mathematics, 18, 1966, pages 169–200. Conté l'enumeració original dels 92 sòlids i la conjectura que no n'hi ha d'altres.
  • Victor A. Zalgaller, "Convex Polyhedra with Regular Faces", 1969 : primera demostració d'aquesta conjectura.
  • Eric W. Weisstein. Johnson Solid : cada sòlid amb el seu desenvolupament

Vegeu tambéModifica

Enllaços externsModifica