Obre el menú principal

Sèrie (matemàtiques)

seqüència matemàtica
La sèrie geomètrica 1 + 1/2 + 1/4 + 1/8 + ... convergeix a 2.

En matemàtiques, una sèrie és la suma dels termes d'una successió. [1][2][3] Normalment es representa una sèrie amb termes com on és l'índex final de la sèrie. Les sèries infinites són aquelles on el subíndex agafa el valor d'absolutament tots els nombres naturals, és a dir, .

En l'àmbit del càlcul infinitesimal, se solen classificar les sèries en dos tipus. Es diu que una sèrie per convergeix (o, equivalentment, que és sumable) si per algun . A aquest se l'anomena suma de la sèrie. D'altra banda, es diu que la sèrie divergeix en la resta de casos.[4] Quan és un espai euclidià, s'anomenen sèries oscil·latòries a aquelles que no tenen límit a la compactació de (l'adherència de ).[5]

L'estudi de les sèries és un dels àmbits principals de l'anàlisi matemàtica i els seus resultats són vitals per múltiples disciplines, incloent-hi la física, la computació, l'estadística i l'economia.

Introducció intuïtivaModifica

Serveixi com a exemple la sèrie següent, que anomenarem S:

 .

Aquesta sèrie es pot escriure de manera compacta amb la notació de sumatoris com segueix:  .

Notem que les regles de la suma habitual (associativitat, commutativitat i distributivitat) poden portar a contradiccions a l'hora d'aplicar-les a sumes infinites. Continuant amb l'exemple anterior, es pot veure com agrupant els termes de diverses maneres s'obtenen resultats diferents. Una possibilitat seria aquesta:

 

i una altra podria ser aquesta:

 

O, fins i tot:

 

Amb aquest exemple tan senzill es pot veure que les regles usuals de la suma no poden aplicar-se en sumes amb un nombre infinit de termes. És per aquest motiu que s'usa una definició diferent pel terme "suma" quan es tracta amb sèries d'infinits termes.

DefinicióModifica

Per tota successió   d'elements (ja siguin nombres reals, complexos, funcions, etc.) la seva sèrie associada es defineix com la suma formal:

 .

També es defineix la seqüència de sumes parcials   associada a   amb termes

 

Aleshores, definim la suma de la sèrie   com el límit (si existeix)

 

Aquesta definició posa de manifest la raó per la qual les sèries convergents també se solen anomenar sumables. De fet, podem reescriure l'expressió anterior com

 

En general podem definir l'aplicació

 

Un resultat molt útil a l'hora de manipular les sèries és el següent:

"Sigui   tota sèrie   es pot descompondre com una suma finita més una sèrie residual com  ."

En efecte aquest resultat és conseqüència directa de la definició,, ja que

 

La utilitat d'aquest resultat és el fet que la classificació de la sèrie   és la mateixa que la sèrie   (Això també es veu clar a partir de la definició que s'ha donat a l'inici sobre la classificació de les sèries) i, en conseqüència, si fem un nombre finit de canvis a la sèrie   això no afecta a la seva classificació ja que, al fer un nombre finit de canvis sempre podrem trobar un número   prou gran perquè tots els canvis que s'hagin fet estiguin dins la suma  .

PropietatsModifica

Propietat associativaModifica

Hem vist al donar la introducció intuïtiva que al aplicar la propietat associativa a les sèries podem arribar a contradiccions, per això és molt important saber quan és possible aplicar aquesta propietat i quan no.

"La propietat associativa només és aplicable a sèries convergents i sèries divergents no oscil·latòries. Aplicar-la a sèries oscil·latòries pot portar a contradiccions."

Podem definir la propietat associativa (de forma barroera, la definició correcta és aquesta) com la possibilitat de posar parells de parèntesis () on vulguem sense que això afecti al resultat de la suma.

Analitzem que passa si, a la sèrie   hi posem un nombre finit de parèntesis. Pel que hem vist a l'apartat anterior, podem trobar un nombre   suficientment gran tal que tots els parèntesis que posem estiguin inclosos dins la suma finita  , com que aquesta és una suma finita (i la propietat associativa es compleix en una suma finita) és clar que el resultat de la sèrie   no es veu afectat (sense importar el tipus de sèrie del que es tracti). El cas interessant és quan el nombre de parèntesis és infinit.

Sigui   hem vist que   amb  .

Si col·loquem infinits parèntesis a la sèrie, deixant-la, per exemple

 

Aleshores, tenim una sèrie diferent   amb  I, per definició   amb  . Notem aleshores que, en el nostre cas concret,

 

Per tant   és una successió parcial de la successió   (com es pot veure comparant les successions). Com que, si una successió   és convergent (divergent), totes les seves successions parcials   són convergents (divergents) i convergeixen al mateix valor que la successió original. Per tant, si   és convergent, aleshores   demostrant la propietat associativa per aquest tipus de sèrie.

Si   és divergent, aleshores   demostrant la propietat associativa per aquest tipus de sèrie.

Si una sèrie és oscil·latòria, aleshores no podem afirmar que   ja que tota successió (convergent o no) pot tenir successions parcials convergents. Aquest és el cas de la sèrie   com hem vist més amunt. El fet que no totes les sèries tinguin propietat associativa i que una sèrie oscil·latòria pugui esdevenir convergent en aplicar la propietat associativa té com a conseqüència que en les sèries no es pot aplicar la propietat dissociativa.

Linealitat de les sèriesModifica

Si tenim dues sèries convergents   i   aleshores es compleix que

 4

En efecte és conseqüència de la linealitat de la suma i la linealitat del límit, ja que:

 

Sèries numèriques de nombres realsModifica

Es diu que una sèrie   és una sèrie numèrica quan el elements de la successió   són nombres. En concret, quan són nombres reals parlem de sèries numèriques de nombres reals. Aquestes sèries tenen certes propietats que altres sèries no tenen. Vegem alguns exemples.

Criteri general de convergència d'una sèrie (numèrica de nombres reals)Modifica

Hem vist que, per definició, una sèrie   és convergent si i només si el límit   essent   les sumes parcials, convergeix a un nombre real. Però una successió de nombres reals és convergent si i només si és de Cauchy. Per tant, podem afirmar que

  és convergent   és de Cauchy.

Però una successió de Cauchy compleix (per definició) que .

Suposem ara que  , aleshores  

Si definim  , aleshores  

Per tant,  . Com que aquest expressió s'ha de complir  , el valor de   pot ser qualsevol nombre natural i l'expressió que acabem de trobar s'ha de complir  . El criteri general de convergència d'una sèrie és precisament:

  és convergent  

Com a conseqüència, podem afirmar que:   és convergent  . El recíproc però, no és cert, la sèrie harmònica n'és un exemple.

Convergència absoluta i condicionalModifica

Article principal: Convergència absoluta

Es diu que la sèrie   és absolutament convergent si la sèrie   és convergent. Una cosa interessant d'aquest tipus de sèries és que

  és absolutament convergent   és convergent.

El recíproc no és cert (la sèrie harmònica alterna és convergent, però no ho és absolutament, ja que la sèrie harmònica és divergent).

Precisament les sèries que compleixen aquesta condició (ser convergents, però no absolutament convergents) se les anomenen sèries condicionalment convergents.

ExemplesModifica

Veiem alguns exemples de sèries numèriques de nombres reals

 

Notar que la sèrie presentada a l'apartat "introducció intuïtiva" és precisament la sèrie geomètrica pel cas en què  .

 

Aquesta sèrie és divergent.

 

La sèrie harmònica és el cas concret d'aquesta sèrie en la què  .

 

ReferènciesModifica

  1. Ortega Aramburu, Joaquin M. Introducció a l'Anàlisi Matemàtica (en català). Bellaterra (Barcelona): Servei de Publicacions de la Universitat Autònoma de Barcelona, 1990, p. 289-315. ISBN 84-7488-800-X, 84-7488-809-3. 
  2. Perelló, Carles. Càlcul Infinitesimal (en català). Barcelona: Enciclopèdia Catalana, 1994, p. 134-140. ISBN 84-7739-518-7. 
  3. Rosa Mateu Martínez, Montserrat Torras i Conangla (Coords.). Diccionari de matemàtiques i estadística (en català). Barcelona: Universitat Politècnica de Catalunya, Enciclopèdia Catalana, 2002, p. 308. ISBN 8441227926. 
  4. Hardy, Godfrey Harold. «Introduction». A: Divergent Series (en anglès). Oxford at the Claredon Press, 1949, pàg. B. 
  5. Rogawski, Jon. Cálculo V.1. Una variable (en espanyol). 2a edició. Barcelona: Reverté, 2012, p. 812. ISBN 9788429151664. 

Vegeu tambéModifica