Sèrie dels inversos dels nombres primers

La sèrie dels inversos dels nombres primers és la sèrie definida com la suma dels recíprocs dels nombres primers, és a dir:

La suma dels recíprocs dels nombres primers creix indefinidament, però de manera molt lenta. Al gràfic l'eix de les abscisses és en escala logarítmica per mostrar la lentitud de creixement de la sèrie. La funció en porpra és una fita inferior també divergent.

Quan n tendeix a infinit la sèrie divergeix:

Aquest resultat fou demostrat per Leonhard Euler l'any 1737 i, des d'aleshores, s'han formulat diverses demostracions de la divergència de la sèrie. Un d'aquests resultats involucra una cota inferior de la sèrie:

Algunes demostracions de la divergènciaModifica

Demostració original d'EulerModifica

La primera demostració, obra del matemàtic suís Leonhard Euler, parteix del següent resultat per la sèrie harmònica

 

i, aplicant-ne el logaritme, es troba

 

per una constant C < 1. I com que la suma dels recíprocs dels primers n nombres naturals és asimptòtica a log(n), es conclou

 

Demostració d'ErdősModifica

Paul Erdős demostrà la divergència per reducció a l'absurd.

Sigui pi l'i-è nombre primer, i suposem que la sèrie convergeix. Aleshores, ha d'existir un nombre nautral k tal que

 

Sigui x un nombre natural, denotem Mx com el conjunt de valors naturals de n menors o iguals a x no divisibles per cap primer major que pk. Trobarem ara una cota superior i una cota inferior per |Mx| (la cardinalitat del conjunt Mx) i veurem que per valors de x prou grans les fites entren en contradicció.

Cota superiorModifica

Tot n de Mx pot escriure's com n = r m2 amb m i r naturals, on r és un enter lliure de quadrats. Com que només els k primers p1, …, pk poden aparèixer (amb exponent 1) a la factorització de r, hi ha d'haver com a molt 2k possibilitats diferents per r. Encara més, hi ha d'haver com a molt √x valors possibles per m. Això ens porta a la cota superior

 

Cota inferiorModifica

Els x − |Mx| nombres restants a la diferència de conjunts {1, 2, . . ., x} \ Mx són tots divisibles per un primer major que pk. Sigui Ni,x el conjunt dels n naturals menors o iguals a x que són divisibles pel i-è primer pi. Aleshores

 

Com que el nombre d'enters a Ni,x és com a molt x/pi (de fet és zero per pi > x), tenim

 

Fent servir (1), obtenim

 

ContradiccióModifica

Quan x ≥ 22k + 2, les dues estimacions entren en contradicció perquè  .

ReferènciesModifica