Condició de frontera de Dirichlet

En matemàtiques, la condició de contorn o condició de frontera de Dirichlet (o de primer tipus) és un tipus de condició de frontera, que rep el nom de Peter Gustav Lejeune Dirichlet (1805–1859).[1] Quan s'aplica a equacions diferencials ordinàries o a equacions en derivades parcials, especifica el valor que ha de prendre la solució en la frontera del domini.

La resolució d'aquest tipus d'equacions es coneix pel nom de problema de Dirichlet. En enginyeria, les condicions de contorn de Dirichlet també són conegudes com a condicions de contorn fixes.

ExemplesModifica

EDOModifica

Exemple d'equacions diferencials ordinàries:

 

les condicions de Dirichlet a l'interval   prenen la forma:

 

on   i   són quantitats donades.

EDPModifica

Exemple d'equacions en derivades parcials:

 

on   representa el Laplacià, les condicions de Dirichlet sobre el domini   prenen la forma:

 

on f és una funció definida a la frontera  .

Aplicacions en enginyeriaModifica

A tall d'exemple, els següents casos es consideren condicions de contorn de Dirichlet:

Altres condicions de contornModifica

Hi ha moltes condicions de contorn alternatives, com les condicions de contorn de Cauchy i les condicions de contorn mixtes, que són una combinalció de les condicions de Dirichlet i les de Neumann.

Vegeu tambéModifica

ReferènciesModifica

  1. Cheng, A. and D. T. Cheng (2005). Heritage and early history of the boundary element method, Engineering Analysis with Boundary Elements, 29, 268–302.