Integració per sèries

En càlcul de primitives la integració per sèries és un mètode emprat per trobar un desenvolupament en sèrie de la funció primitiva d'una funció donada. De vegades el mètode és interessant encara que la funció primitiva es pugui calcular emprant les tècniques habituals perquè permet obtenir identitats matemàtiques interessants.

En el cas d'integrals no elementals la integració per sèries, si és factible, permet obtenir una definició de la funció primitiva i una forma de calcular-la.

DefinicióModifica

Si la funció   és desenvolupable en sèrie:

 

I la sèrie és uniformement convergent, llavors la funció   primitiva de   és desenvolupable en sèrie i el seu desenvolupament en sèrie és:

 

On   és una constant d'integració.

Aplicació al càlcul d'integrals no elementalsModifica

Una integral no elemental és una integral per a la qual es pot demostrar que no existeix cap fórmula en termes de funcions elementals (és a dir polinomis, funcions trigonomètriques, exponencials, logarítmiques i productes i composicions d'aquestes funcions). Tal és el cas de les quatre integrals estudiades per en Joseph Liouville: la integral logaritme li(z), la integral sinus si(x), la integrals cosinus ci(x), i la funció error.

Funció integral logaritmeModifica

 

Funció integral sinusModifica

 

Funció integral cosinusModifica

 

Funció errorModifica

La funció error tret d'un factor constant.

 

Vegeu tambéModifica

ReferènciesModifica

  • Enciclopèdia Espasa. Article sobre integració. Capítol I integrals indefinides. Apartat 6 Integració per sèries.