Nombre gairebé primer
En teoria de nombres, un nombre natural s'anomena k-gairebé primer si i només si té exactament k factors primers, tenint en compte la seva multiplicitat. Més formalment, un nombre n k-gairebé primer si i només si Ω(n) = k, on Ω(n) és la quantitat total de nombres primers en descomposició en factors primers n:
Per tant un nombre natural és un nombre primer si i només si és 1-gairebé primer, i semiprimer si i només si és 2-gairebé primer. El conjunt de nombres k-gairebé primers normalment es nota per Pk. El nombre k-gairebé primer més petit és 2k. Els primers nombres k-gairebé primers són:
k | k-gairebé primers | Successió EESE[1] |
---|---|---|
1 | 2, 3, 5, 7, 11, 13, 17, 19, … | A000040 |
2 | 4, 6, 9, 10, 14, 15, 21, 22, … | A001358 |
3 | 8, 12, 18, 20, 27, 28, 30, … | A014612 |
4 | 16, 24, 36, 40, 54, 56, 60, … | A014613 |
5 | 32, 48, 72, 80, 108, 112, … | A014614 |
6 | 64, 96, 144, 160, 216, 224, … | A046306 |
7 | 128, 192, 288, 320, 432, 448, … | A046308 |
8 | 256, 384, 576, 640, 864, 896, … | A046310 |
9 | 512, 768, 1152, 1280, 1728, … | A046312 |
10 | 1024, 1536, 2304, 2560, … | A046314 |
11 | 2048, 3072, 4608, 5120, … | A069272 |
12 | 4096, 6144, 9216, 10240, … | A069273 |
13 | 8192, 12288, 18432, 20480, … | A069274 |
14 | 16384, 24576, 36864, 40960, … | A069275 |
15 | 32768, 49152, 73728, 81920, … | A069276 |
16 | 65536, 98304, 147456, … | A069277 |
17 | 131072, 196608, 294912, … | A069278 |
18 | 262144, 393216, 589824, … | A069279 |
19 | 524288, 786432, 1179648, … | A069280 |
20 | 1048576, 1572864, 2359296, … | A069281 |
El nombre πk(n) d'enters positius més petits o iguals que n amb, com a màxim, k divisors primers (no necessàriament diferents) tendeix asimptòticament a[2]
un resultat de Landau. Vegeu també el teorema de Hardy–Ramanujan.
Referències
modifica- ↑ L'Enciclopèdia electrònica de successions d'enters
- ↑ Tenenbaum, Gerald. Cambridge University Press. Introduction to Analytic and Probabilistic Number Theory, 1995. ISBN 0521412617.
Enllaços externs
modifica- Weisstein, Eric W., «Almost prime» a MathWorld (en anglès).