Un robot articulat, o angular, és un robot industrial compost de, com a mínim, tres articulacions de revolució amb el primer eix de rotació disposat en sentit vertical i els altres dos en paral·lel en sentit horitzontal.[1][2]

Un robot articulat, de l'empresa FANUC, soldant uns components.

Aquesta distribució imita el braç humà i és molt flexible. Sovint incorpora sis o set graus de llibertat per oferir redundància i permetre abastar posicions de difícil accés.[3] Per altra banda la cinemàtica és difícil de modelar i el pes acumulat dels actuadors afecta la precisió, repetibilitat i càrrega útil. Tot i això, per a la majoria d'aplicacions, és el robot que ofereix un millor rendiment.[4] També s'ha de destacar que hi ha múltiples solucions constructives per aquest tipus de robot, incloent-hi cadenes cinemàtiques complexes que donen més rigidesa al manipulador i permeten desplaçar més càrrega.[2]

Els robots articulats es fan servir en tot tipus d'aplicacions i són els més emprats industrialment. Algunes de les tasques més comunes d'aquest tipus de robot són la pintura, soldadura, manipulació de materials o empaquetatge. Les mides d'aquests tipus de configuració són molt variables, entre 0,5 metres fins a més de 3,5 m, amb grans diferències en la capacitat de càrrega, que pot anar des d'uns 3 kg fins a una tona. Segons la Federació Internacional de Robòtica, l'any 2013, els robots articulats representaven una quota de mercat del 60% sobre el total de robots industrials venuts.[4]

Robots angulars de paletització, de l'empresa KUKA, amb estructura complexa per incrementar la càrrega útil.

Cinemàtica modifica

La cinemàtica directa d'un manipulador articulat es pot obtenir seguint el conveni de Denavit-Hartenberg. A la imatge adjunta hi ha l'abstracció d'un manipulador angular de tres graus de llibertat, RRR. El primer origen de coordenades s'ha establert a la intersecció entre z0 i z1 per simplificar el paràmetre del desplaçament de l'element (d1 = 0). Tots els eixos z s'han establert segons la direcció de rotació de l'articulació, mentre que els eixos x s'han situat seguint la direcció relativa dels enllaços (simplificant els paràmetres d₂ i d₃).[5]

 
Assignació del sistema de coordenades a cada articulació, seguint el conveni de Denavit-Hartenberg, per un manipulador articulat RRR.[6]

Pels sistemes de coordenades presentats, els paràmetres de Denavit-Hartenberg s'inclouen a la taula següent:

Element ai αi di θi
1 0 π/2 0 θ1*
2 a₂ 0 0 θ₂*
3 a₃ 0 0 θ₃*

Aleshores, les matrius de transformació homogènies per cada articulació són:[6]

 

 

 

Aleshores, les equacions de la cinemàtica directa són:[6]

 

On  . Com que z₃ està alineat amb z₂, el sistema de coordenades 3 no coincideix amb un possible sistema de coordenades d'un terminal i per instal·lar-ne un s'ha d'aplicar una transformació.[6]

Per altra banda, la cinemàtica inversa calcula a quins angles han de ser les articulacions per assolir una posició del terminal concreta. En aquest cas es té una posició qualsevol del terminal,  , i s'han de determinar els angles de les articulacions,  , necessaris per assolir aquesta posició.

Aquest problema es pot resoldre amb el mètode geomètric. Si es referencia la cinemàtica a la base fixa es pot trobar immediatament l'angle   necessari:[7]

 

Per altra banda, considerant solament els elements 2 i 3 situats en un pla com el que es pot veure a la figura adjacent, es pot emprar el teorema de Pitàgores i el teorema del cosinus per determinar els angles restants.

 
Dues disposicions diferents dels elements 2 i 3 d'un braç articulat que compleixen la cinemàtica inversa.

 

D'aquest sistema de dues equacions amb dues incògnites,   i  , es pot aïllar   com:

 

Aquesta expressió permet obtenir el valor de l'angle de la tercera articulació en funció del vector de posició del terminal. Tot i això, per motius computacionals, és preferible formular aquesta expressió amb l'arctangent abans que amb l'arccosinus. Aquest canvi es pot desenvolupar de la següent manera:[8]

 

 

A on   és l'expressió que s'ha trobat prèviament. Com es pot veure, existeixen dues solucions possibles per   segons el símbol de l'arrel quadrada que s'usi. Aquestes dues solucions es corresponen a les configuracions colze amunt o colze avall, que es poden veure a la imatge adjunta prèviament.

Amb l'angle de l'articulació 3 definida, ja només queda determinar l'angle de la segona articulació. Aquest valor es pot trobar mitjançant la diferència entre   i  , il·lustrades a la figura prèvia:[9]

 

 

 

I així, finalment:

 

Les dues possibilitats, segons la tria del signe de l'arrel quadrada, tornen a correspondre's amb les dues configuracions colze amunt i colze avall. Així doncs, resolent les tres equacions plantejades, es poden trobar els angles necessaris per moure's a una posició determinada de l'espai.

Referències modifica

Bibliografia modifica

  • Barrientos, Antonio; Peñín, Luis Felipe; Balaguer, Carlos; Santoja, Rafael Aracil. Fundamentos de robótica. McGraw-Hill Interamericana de España, 2007, p. 512. ISBN 978-8448156367 [Consulta: 19 gener 2020]. 
  • Blas i Abante, Marta; Mateu i Martínez, M. Rosa; Picó i Garcia, Rosa Maria; Riba i Romeva, Carles. «Diccionari de robòtica industrial» p. 18, 1991. [Consulta: 15 setembre 2019].
  • Riba i Romeva, Carles. «Els robots industrials I. Característiques» p. 76, 1998. [Consulta: 15 setembre 2019].
  • Siciliano, Bruno; Khatib, Oussama. Springer Handbook of Robotics 2nd Edition. Berlin Heidelberg: Springer, 2016, p. 2259. ISBN 978-3-319-32550-7 [Consulta: 15 setembre 2019]. 
  • Siciliano, Bruno; Sciavicco, Lorenzo; Villani, Luigi; Oriolo, Giuseppe. Robotics. Modelling, Planning and Control. Springer, 2009, p. 632. ISBN 978-1-84628-641-4 [Consulta: 15 setembre 2019]. 
  • Wilson, Mike. Implementation of robot systems. An introduction to robotics, automation, and successful systems integration in manufacturing. Elsevier, 2015, p. 229. ISBN 978-0-124-04733-4 [Consulta: 15 setembre 2019]. 

Enllaços externs modifica