∇ ⋅ E = ρ ε 0 {\displaystyle \nabla \cdot \mathbf {E} ={\frac {\rho }{\varepsilon _{0}}}}
∇ ⋅ B = 0 {\displaystyle \nabla \cdot \mathbf {B} =0}
∮ ∂ Ω E ⋅ d S = 1 ε 0 ∭ Ω ρ d V {\displaystyle {\vphantom {\oint }}_{\scriptstyle \partial \Omega }\mathbf {E} \cdot \mathrm {d} \mathbf {S} ={\frac {1}{\varepsilon _{0}}}\iiint _{\Omega }\rho \,\mathrm {d} V}
∮ ∂ Ω B ⋅ d S = 0 {\displaystyle {\vphantom {\oint }}_{\scriptstyle \partial \Omega }\mathbf {B} \cdot \mathrm {d} \mathbf {S} =0}
∮ ∂ Σ E ⋅ d ℓ = − d d t ∬ Σ B ⋅ d S {\displaystyle \oint _{\partial \Sigma }\mathbf {E} \cdot \mathrm {d} {\boldsymbol {\ell }}=-{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {B} \cdot \mathrm {d} \mathbf {S} }
∮ ∂ Σ B ⋅ d ℓ = μ 0 ( ∬ Σ J ⋅ d S + ε 0 d d t ∬ Σ E ⋅ d S ) {\displaystyle {\begin{aligned}\oint _{\partial \Sigma }&\mathbf {B} \cdot \mathrm {d} {\boldsymbol {\ell }}=\mu _{0}\left(\iint _{\Sigma }\mathbf {J} \cdot \mathrm {d} \mathbf {S} +\varepsilon _{0}{\frac {\mathrm {d} }{\mathrm {d} t}}\iint _{\Sigma }\mathbf {E} \cdot \mathrm {d} \mathbf {S} \right)\\\end{aligned}}}