Obre el menú principal
Recta tangent a (a, f(a))

En matemàtiques, una aproximació lineal és una aproximació d'una funció qualsevol fent servir una funció lineal (de forma més precisa una funció afí).

DefinicióModifica

Donada una funció derivable f d'una variable real, el teorema de Taylor per a n=1 estableix que

 

on el terme   és el residu o error. L'aproximació lineal s'obté depreciant el residu:

 

Lo qual és cert per a valors de x propers a a. L'expressió del cantó dret és precisament l'equació de la recta tangent a la gràfica de f al punt (a, f(a)), i per aquest motiu, d'aquest procés també se'n diu aproximació per la recta tangent.

Les aproximacions lineals per a funcions vectorials de variable vectorial, s'obtenen de la mateixa forma, substituint la derivada en un punt per la matriu jacobiana. Per exemple, donada una funció derivable   amb variables reals, es pot aproximar   per   en punts proper a   fent servir la fórmula

 

L'expressió de la dreta és l'equació del pla tangent a la gràfica de   al punt  

En el cas més general d'espais de Banach, es té

 

on   és la derivada de Fréchet de   a  .

ExemplesModifica

Per a trobar una aproximació de   es pot fer tal com s'explica tot seguit.

  1. Es planteja la funció   Per tant, el problema consisteix a trobar el valor de  .
  2. Es té
     
  3. D'acord amb l'aproximació lineal
     
  4. El resultat, 2,926, és força proper al valor de la funció 2,924…

ReferènciesModifica

  • Weinstein, Alan; Marsden, Jerrold E.. Calculus III. Berlin: Springer-Verlag, 1984, page 775. ISBN 0-387-90985-0. 
  • Strang, Gilbert. Calculus. Wellesley College, 1991, page 94. ISBN 0-9614088-2-0. 
  • Bock, David; Hockett, Shirley O.. How to Prepare for the AP Calculus. Hauppauge, NY: Barrons Educational Series, 2005, page 118. ISBN 0-7641-2382-3.