Proporcional integral derivatiu: diferència entre les revisions

Contingut suprimit Contingut afegit
m neteja i estandardització de codi
m neteja i estandardització de codi
Línia 1:
[[Fitxer:PID.svg|miniatura|Diagrama en blocs d'un control PID.]]
 
Un '''proporcional integral derivatiu''' ( '''PID''' ) és un mecanisme de control per [[realimentació]] que s'utilitza en [[sistemes de control]] industrials. Un controlador PID corregeix l'error entre un valor mesurat i el valor que es vol obtenir, calculant i després traient una acció correctora que pot ajustar al procés d'acord. El controlador '''PID''' és, de lluny, l'algorisme de control més comú.
 
Aquest algorisme pot ser implementat de diferents maneres: com a controlador ''stand-alone'', com a part d'un paquet de control digital directe o com a part d'un sistema de control distribuït. El seu estudi es pot realitzar des de diferents punts de vista. Pot ser tractat com un dispositiu que pot ser utilitzat amb unes quantes regles pràctiques però també pot ser estudiat analíticament. L'[[algorisme]] de càlcul del control PID es dóna en tres paràmetres diferents: el proporcional, l'integral, i el derivatiu. El valor proporcional determina la reacció de l'error actual. L'Integral genera una correcció proporcional a la integral de l'error, això ens assegura que aplicant un esforç de control suficient, l'error de seguiment es redueix a zero. El derivat determina la reacció del temps en què l'error es produeix. La suma d'aquestes tres accions és usada per ajustar al procés via un element de control com la posició d'una vàlvula de control o l'energia subministrada a un escalfador, per exemple. Ajustant aquestes tres constants en l'algoritme de control del PID, el controlador pot proveir un control dissenyat per al qual requereixi el procés a realitzar. La resposta del controlador es pot descriure en termes de resposta del control davant un error, el grau el qual el controlador arriba al "''set point''", i el grau de canvi del sistema.
 
L'ús del PID per a control no garanteix el control òptim del sistema o l'[[estabilitat]] d'aquest. Algunes aplicacions poden només requerir un o dos modes dels quals proveeix aquest sistema de control. Un controlador PID pot ser anomenat també PI, PD, P o I en l'absència de les accions de control respectives. Els controladors PI són particularment comuns, ja que l'acció derivativa és molt sensible al soroll, i l'absència del procés integral pot evitar que s'arribi al valor desitjat a causa de l'acció de control.
Línia 105:
on els paràmetres d'ajust són els següents:
 
'''Guany Proporcional, Kp.''' Els valors més alts generalment signifiquen una resposta més ràpida, ja que el més gran és l'error, el més gran és la compensació de termini proporcional. Un augment proporcional excessivament gran donarà lloc a la inestabilitat i el procés d'oscil·lació.
 
'''Guany integral, Ki.''' Els valors més alts impliquen errors d'estat estacionari que s'eliminen més ràpidament. La compensació és més gran depassant: qualsevol error negatiu integrat en la resposta transitòria ha de ser integrada lluny per error positiu abans d'assolir l'estat estacionari.
 
Línia 129:
Un llaç de PID molt ràpid arriba a la seva ''setpoint'' de manera veloç. Alguns sistemes no són capaços d'acceptar aquest tret brusc, en aquests casos es requereix un altre llaç amb un P menor a la meitat del P del sistema de control anterior.
 
=== Mètode de Ziegler-Nichols ===
Un altre mètode d'ajust es coneix formalment com el mètode de Ziegler-Nichols, presentat per John G. Ziegler i Nathaniel B. Nichols. Com en el mètode anterior, el Ki i Kd són els primers beneficis a zero. L'augment de P s'incrementa fins a arribar al guany crític, Kc, en què la sortida del bucle comença a oscil·lar Kc i el període d'oscil·lació Pc es fan servir per establir els beneficis, així:
'''Tipus de control Kp Ki Kd
Línia 138:
== Història ==
Els primers controladors PID van aparèixer al voltant del 1890. Els controladors PID es van desenvolupar per la direcció automàtica de vaixells. Un dels primers exemples d'un controlador PID va ser desenvolupat per Elmer Sperry el 1911, mentre que la primera anàlisi publicada sobre la teòrica d'un controlador PID va ser a Rússia, l'enginyer nord-americà Minorsky Nicolau el 1922. Minorsky va ser el director de disseny de sistemes automàtics de la Marina dels EUA, i va basar la seva anàlisi en l'observació d'un timoner, observant com un pilot controla el vaixell, que no només es basa en l'error actual, sinó també en cas d'error passat i l'actual ritme de canvi. El seu objectiu era l'estabilitat, no pas el control general, cosa que simplifica considerablement el problema. Si bé el control proporcional proporciona estabilitat enfront de petites pertorbacions, que era insuficient per fer front a una pertorbació constant com per exemple un vendaval fort, es requereix l'addició del terme integral. Finalment, el terme derivat s'ha afegit per millorar el control. Els assaigs es van dur a terme en el USS New Mèxic, amb el controlador de control de la velocitat angular del timó. El controlador PI va donar orientació sostinguda de ± 2°, mentre que l'addició de D va produir una desviació de ± 01/06°, millor del que la majoria de timoners podien arribar. La Marina en última instància, no va adoptar el sistema, a causa de la resistència per part del personal. Un treball similar es va dur a terme i publicat per diversos altres a la dècada del 1930.
 
== Limitacions d'un control PID ==
Mentre que els controladors PID són aplicables a la majoria dels problemes de control, pot ser pobres en altres aplicacions.
Linha 145 ⟶ 146:
 
Un altre problema que té el PID és que és [[lineal]]. Principalment, l'acompliment dels controladors PID en sistemes no lineals és variable. També un altre problema comú que té el PID és, que a la part derivativa, el [[soroll]] pot afectar el ''sistema'', fent que aquestes petites variacions, facin que el canvi a la sortida sigui molt gran. Generalment un [[Filtre passa sota]] ajuda, ja que remouria els components d'alta freqüència del soroll. Tanmateix, un FPB i un control derivatiu poden fer que es cancel·lin entre ells. Alternativament, el control derivatiu pot ser tret en alguns sistemes sense gaire pèrdua de control. Això és equivalent a utilitzar un controlador PID com PI solament.
==Control en cascada==
 
==Control en cascada==
Un avantatge distintiu dels controladors PID és que dos controladors PID es poden utilitzar junts per obtenir un millor rendiment dinàmic. Això es diu en cascada PID control. En el control en cascada hi ha dos PIDs disposades amb un PID control del punt d'ajust d'un altre. Un controlador PID actua com a controlador de bucle exterior, que controla el paràmetre físic primari, com el nivell de líquid o de velocitat. Els actes d'un altre controlador com a controlador de bucle intern, el qual llegeix la sortida del controlador de bucle exterior com a punt de referència, generalment, el control d'un paràmetre de canvi més ràpid, cabal o l'acceleració. Pot ser demostrat matemàticament que la freqüència de treball del responsable del tractament és més gran i la constant de temps de l'objecte es redueix mitjançant l'ús de controladors PID en cascada.
 
== Exemples pràctics ==
Desitgem controlar el cabal d'un flux d'entrada en un reactor químic. En primer lloc haurem de posar una vàlvula de control del cabal d'aquest flux, i un cabalímetre, amb la finalitat de tenir un mesurament constant del valor del cabal que circuli. El controlador ira vigilant que el cabal que circuli sigui l'establert per nosaltres, en el moment que detecti un error, enviés un senyal a la vàlvula de control de manera que aquesta s'obrirà o tancarà corregint l'error mesurat. I haurem d'aquesta manera el flux desitjat i necessari. El PID, és un càlcul matemàtic, el que mana la informació és el PLC.
Linha 155 ⟶ 157:
 
==L'execució material de control PID==
 
En els principis de la història del procés de control automàtic del controlador PID s'implementa com un dispositiu mecànic. Aquests controladors mecànics van usar una palanca, una molla i una massa i l'energia que s'emprava era sovint per aire comprimit. Aquests controladors pneumàtics es van estandarditzar en el món de la indústria.
 
Linha 163 ⟶ 164:
 
==Aplicacions / Exemple==
 
Un exemple molt senzill que il·lustra la funcionalitat bàsica d'un PID és quan una persona entra en una dutxa. Inicialment obre la clau d'aigua calenta per augmentar la temperatura fins a un valor acceptable (també anomenat "Setpoint"). El problema és que pot arribar el moment en què la temperatura de l'aigua sobrepassi aquest valor així que la persona ha d'obrir una mica la clau d'aigua freda per contrarestar la calor i mantenir el balanç. L'aigua freda s'ajusta fins a arribar a la temperatura desitjada. En aquest cas, l'humà és el que està exercint el control sobre el llaç de control, i és aquell que pren les decisions d'obrir o que tancar alguna de les claus; però no seria ideal si en lloc de nosaltres, fóra una màquina la que prengués les decisions i mantingués la temperatura que desitgem?