Obre el menú principal

Identitat

(S'ha redirigit des de: Identificació)

En matemàtiques, la paraula identitat té diversos significats importants:

  • Una identitat és una igualtat que continua sent veritat sense importar el valor que prenguin les variables que hi surten, cal distingir-les de les igualtats les quals només són veritat en determinades condicions. Per això, de vegades es fa servir el símbol ≡. (Tot i que això pot ser ambigu perquè és el mateix símbol que es fa servir per a les relacions de congruència.)
  • En àlgebra, la identitat o l’element identitat o neutre d'un conjunt S amb una operació és un element e que operat amb qualsevol element s de S produeix altre cop s.
  • La funció identitat d'un conjunt S en si mateix, escrita sovint com o , és una funció tal que per a tot x de S.
  • En àlgebra lineal, la matriu identitat és una matriu quadrada que té uns a la diagonal principal i zeros a qualsevol altre lloc.

De vegades les identitats s'indiquen amb el símbol enlloc de l'=, el símbol d'igualtat.[1]

ExemplesModifica

Relació d'identitatModifica

Un exemple habitual del primer significat és la identitat trigonomètrica

 

La qual és veritat per a tots els valors reals de   (atès que els nombres reals   són el domini de sin i cos).

En canvi en el cas de:

 

És veritat només per alguns valors de  , no tots. Per exemple, l'última equació és veritat quan  , i falsa quan  

Element identitatModifica

El nombre 0 és l’"element identitat de la suma" pels enters, els reals, i els complexos. Pels reals, per a tot  

 
  i
 

De forma semblant, El nombre 1 és l"element identitat de la multiplicació" pels enters, els reals, i els complexos. Pels nombres reals, per a tot  

 
  i
 

Funció identitatModifica

Un exemple típic d'una funció identitat és la permutació identitat, la qual envia a cada element del conjunt   cap a si mateix.

ComparacióModifica

Aquests significats no són mútuament excloents; per exemple, la permutació identitat és l'element identitat del conjunt de les permutacions de   per a l'operació de composició.

Articles relacionatsModifica

ReferènciesModifica

  1. Weiner, Joan (2004).Frege Explained. Open Court.