Integració de fraccions racionals

La integració de les funcions racionals (per trobar la seva funció primitiva) es fa descomponent la fracció racional en la suma d'un polinomi més una sèrie de fraccions racionals amb el denominador de grau dos com a màxim i després integrant cada fracció. Aquest procediment s'anomena descomposició en fraccions parcials.

Sia , on P i Q són polinomis, si el grau de P és més gran que el grau de Q, es divideix P entre Q i s'escriu:

Llavors es descompon en una suma de fraccions racionals de la forma:

Per a obtenir aquesta descomposició, es troben les arrels de Q, es descompon Q i es planteja una equació on les A, p i q són incògnites, en plantejar que el polinomi sigui igual al numerador, cada terme ha de ser igual, de forma que s'obté un sistema d'equacions lineals amb tantes equacions i tantes incògnites com el grau del polinomi del denominador.

Llavors el problema queda reduït a integrar cada un dels diferents tipus de fraccions que han quedat.

Polinomi de primer grau al denominador

modifica

La substitució u = ax + b, du = a dx transforma la integral

 

en

 

Potència d'un polinomi de primer grau al denominador

modifica

La mateixa substitució transforma la integral

 

en

 

Polinomi irreductible de segon grau al denominador

modifica

Suposeu una integral com per exemple

 

La forma més ràpida de veure que el denominador x² − 8x + 25 és irreductible és observar que el seu discriminant és negatiu.

Es transforma de la següent manera:

 

La idea és fer la substitució

 
 
 

Per això caldria tenir x − 4 al numerador. Per això es descompon el numerador en x + 6 en (x − 4) + 10, i s'escriu la integral com a

 

La substitució porta a:

 

Ara cal resoldre la integral

 

Es fa:

 

I tot seguit la substitució

 
 

Que dona

 

Ajuntant-ho tot,

 

Polinomi irreductible de segon grau al denominador elevat a una potència

modifica

Per exemple

 

Tal com abans, es parteix x + 6 en (x − 4) + 10, i es tracta la part que conté x − 4 via la substitució

 
 
 

Això deixa

 

Tal com abans, s'obté

 

Llavors es fa servir la substitució:

 
 
 

Així la integral esdevé

 

Aplicant repetidament la fórmula de l'angle meitat

 

Es pot reduir a una integral que no implica potències del cos θ més grans que la unitat.

Llavors es té el problema de una expressió amb el sin(θ) i el cos(θ) com a funcions de x. Com que

 

I la tangent = catet oposat/adjacent. Si el catet "oposat" té la longitud x − 4 i l'"adjacent" té la longitud 3, llavors pel teorema de Pitàgores la hipotenusa té de longitud √((x − 4)² + 3²) = √(x² −8x + 25).

Per tant es té

 
 

i

 

Vegeu també

modifica