Derivació de les funcions trigonomètriques

Funció Derivada

La derivació de les funcions trigonomètriques és el procés matemàtic de trobar el ritme al qual una funció trigonomètrica canvia respecte de la variable independent; la derivada de la funció. Les funcions trigonomètriques habituals inclouen les funcions sin(x), cos(x) i tan(x). Per exemple, al derivar f(x) = sin(x), s'està calculant la funció f′(x) tal que dona el ritme de canvi del sin(x) a cada punt x.


Derivada de la funció sinus

modifica

A partir de la definició de la derivada d'una funció f(x):

 

Per tant si f(x) = sin(x)

 

A partir de la identitat trigonomètrica  , es pot escriure

 

Agrupant els termes en cos(x) i sin(x), la derivada esdevé

 

Reordenant els termes i el límit s'obté

 

Ara com que sin(x) i cos(x) no varien en variar h, es poden treure fora del límit per a obtenir

 

El valor dels límits

 

Són 1 i 0 respectivament. Per tant, si f(x) = sin(x),

 

Derivada de la funció cosinus

modifica

Si f(x) = cos(x)

 

A partir de la identitat trigonomètrica  , es pot escriure

 

Operant s'obté

 

Com que sin(x) i cos(x) no varien en variar h, es poden treure fora del límit per a obtenir

 

El valor dels límits

 

Són 1 i 0 respectivament. Per tant, si f(x) = cos(x),

 

Derivada de la funció tangent

modifica

A partir de la regla Regla del quocient, segons la qual si la funció que es vol derivar,  , es pot escriure com

 

i   , llavors la regla diu que la derivada de   és igual a:

 

A partir de la identitat trigonomètrica

 

fent

   
   

substituint resulta

 

operant

 

i aplicant les identitats trigonomètriques

 
 

resulta

 

O bé,

 

Derivada de la funció cotangent

modifica

Si  , com que  , aplicant la Regla de la raó inversa d'una funció resulta:

 


 

Derivada de la funció secant

modifica

Si  , com que  , aplicant la Regla de la raó inversa d'una funció resulta:

 


 

Derivada de la funció cosecant

modifica

Si  , com que  , aplicant la Regla de la raó inversa d'una funció resulta:

 


 

Derivades de les funcions inverses de les funcions trigonomètriques

modifica

Les derivades de les funcions inverses es troben fàcilment aplicant la regla de la derivada de la funció inversa. Vegeu la demostració en l'article Derivada de les inverses de les funcions trigonomètriques