Equacions de Cauchy-Riemann

Les equacions de Cauchy-Riemann caracteritzen les funcions d'una variable complexa diferenciables en sentit complex entre les funcions diferenciables en sentit real: són condicions necessàries i suficients relatives a les derivades parcials d'una funció diferenciable en sentit real perquè sigui diferenciable en sentit complex.

Considerem aquí una funció d'una variable complexa, definida en un obert U de . Emprem les notacions següents:

  • la variable complexa es nota per , on x, y són reals
  • les parts real i imaginària de es noten respectivament per i , és a dir: , on són dues funcions reals de dues variables reals.

Les equacions de Cauchy-Riemann en es poden escriure sota les formes equivalents següents:

  • i

Funcions d'una variable complexa diferenciables en sentit complexModifica

DefinicióModifica

Diem que la funció   és diferenciable en sentit complex, o  -diferenciable (o derivable) en un punt   si existeix el límit (finit)  , anomenat derivada de f en  .

Fixem-nos que aquesta condició de  -diferenciabilitat per a funcions de variable complexa és molt més restrictiva que l'equivalent per a funcions de variable real. L'origen d'això es troba en el fet que per a funcions de variable real per a la diferenciabilitat en un punt només cal exigir que existeixin i siguin iguals els límits per la dreta i per l'esquerra quan els increments Δx tendeixen a zero, ja que són les dues úniques possibilitats d'aproximar-se al punt. En canvi, en el pla complex hi ha infinites possibilitats (infinits camins) per aproximar-se a un punt determinat.

Un cas importantModifica

Es diu que una funció és holomorfa en un obert de   si és  -diferenciable en tot punt d'aquell obert.

Caracterització de les funcions diferenciables en sentit complexModifica

TeoremaModifica

  • Les funcions  -diferenciables en un punt   (on   són reals) son aquelles funcions
    • diferenciables en sentit real en  
    • i que, a més a més, compleixen les equacions de Cauchy-Riemann en  . Aquestes equacions es poden escriure sota les formes equivalents següents:
      •  
      •   i  
      •  
  • En aquest cas:
    • la diferencial de   al punt   és l'aplicació  
    •  

Un cas importantModifica

La caracterització següent de les funcions holomorfes és una conseqüència immediata del teorema precedent, aplicat en cada punt.

Teorema: una funció   és holomorfa en l'obert U de   si i només si:

  1. és diferenciable en sentit real en tot punt de U,
  2. i compleix les equacions de Cauchy-Riemann en tot punt de U

ExemplesModifica

  • La funció   és (almenys) de classe   en  , per tant hi és  -diferenciable; però no és  -diferenciable en cap punt, perquè no compleix les equacions de Cauchy-Riemann en cap punt. En efecte, com que  :
    •  
    •  : per a tot  ,  .
  • La funció   és (almenys) de classe   en  , per tant hi és  -diferenciable; és  -diferenciable en 0 i només en aquest punt (no és holomorfa en cap obert: el conjunt   dels seus punts de  -diferenciabilitat té interior buit).
  • La funció   és holomorfa en   i per a tot  ,  . En efecte, si   i  ,   quan  . Es té  , per tant:
    •  
    •   (equacions de Cauchy-Riemann en z).

Un exemple on les derivades parcials no són contínuesModifica

Se sap que tota funció holomorfa en un obert té derivades parcials contínues en aquest obert (això no forma part de la definició; la continuïtat de les derivades parcials i àdhuc el caràcter infinitament diferenciable de la funció és una conseqüència de la teoria de Cauchy). Tanmateix, és possible que una funció diferenciable compleixi les equacions de Cauchy-Riemann en un conjunt no obert (per exemple en un únic punt) i que les seves derivades parcials no siguin contínues.