En matemàtiques, la fórmula de Faulhaber, en honor de Johann Faulhaber, expressa la suma de les potències dels primers n nombres naturals
com un polinomi en n de grau , els coeficients dels quals es construeixen a partir dels nombres de Bernoulli. La fórmula és la següent:
Faulhaber mai no va conèixer aquesta fórmula general; el que sí que va conèixer van ser almenys els primers 17 casos i el fet que, si l'exponent és senar, llavors la suma és una funció polinòmica de la suma al cas especial en què l'exponent sigui 1. També va fer algunes generalitzacions (vegeu Knuth).
Si l'índex de suma de la sèrie va des d'1 fins a en comptes d'anar des d'1 fins a n, aquestes fórmules són modificades de tal manera que l'únic canvi és que es pren en comptes de +1/2 (és a dir, en aquest cas, en la fórmula només hi intervenen nombres de Bernoulli). Així, el segon terme de major ordre en tots els resultats anteriors canvia el símbol de suma pel de diferència.
Al càlcul llindar clàssic, es tracta formalment als índexs j en una seqüència com si aquests fossin exponents. Fent això, es pot aplicar el teorema del binomi i obtenir:
En el càlcul llindar modern, es construeix el funcional linealT a l'espai vectorial de polinomis en una variable b donada per:
és un polinomi en a , on a és la suma dels n primers naturals:
En particular es té:
La primera d'aquestes identitats és el teorema de Nicomachus. Alguns autors anomenen els polinomis de la dreta d'aquestes identitats "polinomis de Faulhaber en a".
MathWorld: urlname: FaulhabersFormula. Faulhaber s formula
"Darinnen die miraculosische Inventiones zu donin höchsten Cossen weiters continuirt und profitiert werden", Acadèmia Algebrae , Johann Faulhaber, Augpurg, bei Johann Ulrich Schöigs, 1631.