Traça (àlgebra lineal)

En àlgebra lineal, la traça d'una matriu quadrada A d'nxn es defineix com la suma dels elements de la diagonal principal d'A, és a dir

Traça d'una matriu de 4×4

on aij representa l'element que és a la fila i-èsima i a la columna j-èsima d'A.

Propietats

modifica
 
 
sent   i   matrius quadrades, i   un escalar.
  • Com la diagonal principal no es troba afectada en transposar la matriu:
 
  • Si   és una matriu d'  i   una matriu d' , llavors:
 
Per demostrar-ho tenim en compte que el producte de les matrius   i   ve donat per
 
amb la qual cosa podem expressar la traça de   com
 
i tenint en compte la propietat associativa del sumatori
 
Cal notar que   és una matriu quadrada d' , mentre que   és una matriu quadrada d' 
  • Si   és una matriu quadrada d'ordre   amb   valors propis reals o complexos (incloent multiplicitat):   llavors:
 
Això pot veure's fàcilment tenint en compte la corresponent forma canònica de Jordan de l'aplicació lineal associada a la matriu. Com que la traça d'una matriu i de la forma de Jordan associada són iguals en ser la traça un invariant algebraic, la traça de la matriu és la suma dels elements de la diagonal de la forma de Jordan, és a dir, la suma d'autovalors.