Trajectòria hiperbòlica

En mecànica celeste una trajectòria hiperbòlica és la trajectòria de qualsevol objecte al voltant d'un cos central amb velocitat suficient per escapar de l'atracció gravitacional de l'objecte central. El nom deriva del fet que segons la teoria newtoniana tal òrbita té la forma d'una hipèrbola.[1] Més tècnicament, una trajectòria hiperbòlica té una excentricitat més gran que aquesta.

El camí blau en aquesta imatge és un exemple d'una trajectòria hiperbòlica
En el quadrant inferior dret es descriu una trajectòria hiperbòlica.

Sota suposicions estàndards un cos que viatja segons aquesta trajectòria s'allunya fins a l'infinit, arribant-hi amb una velocitat d'excés hiperbòlica relativa al cos central. Semblantment a les trajectòries parabòliques, totes les trajectòries hiperbòliques són també trajectòries d'escapament. L'energia específica orbital d'una trajectòria hiperbòlica és positiva, és a dir, l'energia cinètica és superior a l'energia potencial i la velocitat que porta l'objecte excedeix la velocitat d'escapament.[2]

Durant l'ús d'assistència gravitatòria, la trajectòria del cos orbitant el planeta pot ser descrita amb una trajectòria hiperbòlica.

Velocitat d'excés hiperbòlica

modifica

Sota suposicions estàndards, un cos que viatja en una trajectòria hiperbòlica arriba a l'infinit a una velocitat orbital anomenada velocitat d'excés hiperbòlica ( ) que ve donada per la següent fórmula:

 

On:

La velocitat d'excés hiperbòlica està relacionada amb l'energia específica orbital:

 

  s'utilitza al planejar missions interplanetàries.

Velocitat

modifica

Sota suposicions estàndards la velocitat orbital ( ) d'un cos que viatja en una trajectòria hiperbòlica és:

 

On:

Sota suposicions estàndards, a qualsevol posició en l'òrbita es manté la següent relació entre la velocitat orbital, la velocitat d'escapament i la velocitat d'excés hiperbòlica:

Angle entre aproximació i sortida

modifica

Anomenant l'angle entre aproximació i sortida (entre asímptotes)  :

  and  

On:

  •   és l'excentricitat de l'òrbita, la qual és més gran que 1 a les trajectòries hiperbòliques.

Periàpside

modifica

La distància mínima entre els cos i el cos central (periàpside) és:

  

Energia

modifica

Sota suposicions estàndards, l'energia específica orbital \epsilon\, d'un cos en aquest tipus d'òrbita és més gran que zero i  l'equació de conservació d'energia orbitària per aquesta classe d'òrbita és:

 

On:

  •   és la velocitat orbital 
  •   és la distància radial entre el cos orbitant i el cos central
  •   és el semieix major negatiu,
  •   és el paràmetre gravitacional estàndard.

Referències

modifica
  1. Faber, Richard L. Differential Geometry and Relativity Theory (en anglès). Routledge, 2017, p. 184. ISBN 9781351455152. 
  2. Dulce María Andrés Cabrerizo, Juan Luis Antón Bozal. Física 2º Bachillerato (en castellà). Editex, 2017, p. 37. ISBN 9788491610519. 

Bibliografia

modifica
  • Vallado, David A. Fundamentals of Astrodynamics and Applications, Third Edition. Hawthorne, CA.: Hawthorne Press, 2007. ISBN 978-1-881883-14-2.