Teoria quàntica de camps

l’aplicació de la mecànica quàntica al concepte físic de camp
(S'ha redirigit des de: Teoria dels camps quàntics)

La teoria quàntica de camps (sovint abreujada com a TQC o QFT per Quantum Field Theory) és l'aplicació de la mecànica quàntica al concepte físic de camp (com per exemple el camp electromagnètic), així com a les interaccions dels camps amb la matèria. Els fonaments de la teoria es van desenvolupar entre el final dels anys 1920 i els anys 1950 combinant la mecànica quàntica amb la teoria de la relativitat restringida, especialment per Paul Dirac, Vladímir Fok, Pascual Jordan, Wolfgang Pauli, Werner Heisenberg, Hans Bethe, Sin-Itiro Tomonaga, Julian Schwinger, Richard Feynman i Freeman Dyson.[1]

La teoria proporciona un marc teòric utilitzat àmpliament en física de partícules i en física de la matèria condensada. En particular, la teoria quàntica del camp electromagnètic, coneguda com a electrodinàmica quàntica, fou el primer exemple de teoria quàntica de camps i és la teoria comprovada experimentalment amb major precisió de la física. [2] Les teories quàntiques de camps no relativistes són necessàries en física de la matèria condensada (per exemple en la teoria BCS de la superconductivitat), mentre que les teories relativistes són indispensables en física de partícules.

Història

modifica

La teoria quàntica de camps va sorgir del treball de generacions de físics teòrics durant gran part del segle xx. El seu desenvolupament va començar a la dècada de 1920 amb la descripció de les interaccions entre la llum i els electrons, culminant amb la primera teoria quàntica de camps—electrodinàmica quàntica. Aviat va seguir un obstacle teòric important amb l'aparició i persistència de diversos infinits en els càlculs pertorbatius, un problema que només es va resoldre als anys 50 amb la invenció del procediment de renormalització. Una segona barrera important va venir amb l'aparent incapacitat de la TQC per descriure la força nuclear feble i forta, fins al punt que alguns teòrics van demanar l'abandonament de l'enfocament teòric del camp. El desenvolupament de la teoria de gauge i la finalització del model estàndard de la física de partícules a la dècada de 1970 van portar a un renaixement de la teoria quàntica de camps.

Fonaments teòrics

modifica
 
Línies de camp magnètic visualitzades amb llimadures de ferro. Quan un tros de paper s'escampa amb llimadures de ferro i es col·loca damunt d'un imant de barra, les llimades s'alineen segons la direcció del camp magnètic, formant arcs que permeten als espectadors veure clarament els pols de l'imant i veure el camp magnètic generat.

La teoria quàntica de camps resulta de la combinació de la teoria clàssica de camps, la mecànica quàntica i la relativitat especial.[3] A continuació s'ofereix una breu visió general d'aquests precursors teòrics.

La teoria de camps clàssica més antiga és aquella que va sorgir de la llei de la gravitació universal de Newton, malgrat l'absència total del concepte de camps del seu tractat de 1687 Philosophiæ Naturalis Principia Mathematica. La força de gravetat tal com la descriu Isaac Newton és una «acció a distància»: els seus efectes sobre objectes llunyans són instantanis, independentment de la distància. En un intercanvi de cartes amb Richard Bentley, però, Newton va afirmar que «és inconcebible que la matèria bruta inanimada, sense la mediació d'una altra cosa que no és material, operi i afecti una altra matèria sense contacte mutu».[4] No va ser fins al segle xviii que els físics matemàtics van descobrir una descripció convenient de la gravetat basada en camps: una quantitat numèrica (un vector en el cas de camp gravitatori) assignat a cada punt de l'espai indicant l'acció de la gravetat sobre qualsevol partícula en aquest punt. Tanmateix, això es va considerar només un truc matemàtic.[5]

Els camps van començar a adquirir una existència pròpia amb el desenvolupament de l'electromagnetisme al segle xix. Michael Faraday va encunyar el terme anglès «field» (camp) el 1845. Va introduir els camps com a propietats de l'espai (fins i tot quan està desproveït de matèria) amb efectes físics. Va argumentar en contra de «l'acció a distància» i va proposar que les interaccions entre objectes es produeixin mitjançant «línies de força» que omplen l'espai. Aquesta descripció dels camps es manté fins avui.[6][7][8]

La teoria de l'electromagnetisme clàssic es va completar el 1864 amb les equacions de Maxwell, que descrivien la relació entre el camp elèctric, el camp magnètic, el corrent elèctric i la càrrega elèctrica. Les equacions de Maxwell implicaven l'existència d'ones electromagnètiques, un fenomen pel qual els camps elèctrics i magnètics es propaguen d'un punt espacial a un altre a una velocitat finita, que resulta ser la velocitat de la llum. Així, l'acció a distància es va refutar de manera concloent.[9]

Malgrat l'enorme èxit de l'electromagnetisme clàssic, no va poder explicar les línies discretes dels espectres atòmics, ni tampoc la distribució de la radiació del cos negre en diferents longituds d'ona.[10] L'estudi de Max Planck sobre la radiació del cos negre va marcar el començament de la mecànica quàntica. Va tractar els àtoms, que absorbeixen i emeten radiació electromagnètica, com a petits oscil·ladors amb la propietat crucial que les seves energies només poden prendre una sèrie de valors discrets, més que continus. Aquests es coneixen com a oscil·ladors harmònics quàntics. Aquest procés de restringir les energies a valors discrets s'anomena quantització.[11] Basant-se en aquesta idea, Albert Einstein va proposar el 1905 una explicació per a l'efecte fotoelèctric, que la llum es compon de paquets individuals d'energia anomenats fotons (els quants de llum). Això implicava que la radiació electromagnètica, tot i ser ones en el camp electromagnètic clàssic, també existeix en forma de partícules.[10]

El 1913, Niels Bohr va introduir el model de Bohr de l'estructura atòmica, on els electrons dins dels àtoms només poden prendre una sèrie d'energies discretes, més que contínues. Aquest és un altre exemple de quantificació. El model de Bohr va explicar amb èxit la naturalesa discreta de les línies espectrals atòmiques. El 1924, Louis de Broglie va proposar la hipòtesi de la dualitat ona-partícula, que les partícules microscòpiques presenten propietats semblants a les ones i a les partícules en diferents circumstàncies.[10] Unint aquestes idees disperses, una disciplina coherent, la mecànica quàntica, es va formular entre 1925 i 1926, amb importants contribucions de Max Planck, Louis de Broglie, Werner Heisenberg, Max Born, Erwin Schrödinger, Paul Dirac i Wolfgang Pauli.[12]

El mateix any que el seu article sobre l'efecte fotoelèctric, Einstein va publicar la seva teoria de la relativitat especial, basada en l'electromagnetisme de Maxwell. Es van donar noves regles, anomenades transformacions de Lorentz, per a la manera com les coordenades de temps i espai d'un esdeveniment canvien sota canvis en la velocitat de l'observador, i la distinció entre temps i espai es va difuminar.[13] Es va proposar que totes les lleis físiques havien de ser les mateixes per als observadors a diferents velocitats, és a dir, que les lleis físiques fossin invariants sota transformacions de Lorentz.

Quedaven dues dificultats. Observacionalment, l'equació de Schrödinger subjacent a la mecànica quàntica podria explicar l'emissió estimulada de la radiació dels àtoms, on un electró emet un nou fotó sota l'acció d'un camp electromagnètic extern, però no va poder explicar l'emissió espontània, on un electró disminueix espontàniament en energia i emet un fotó fins i tot sense l'acció d'un camp electromagnètic extern. Teòricament, l'equació de Schrödinger no podia descriure els fotons i era incompatible amb els principis de la relativitat especial: tracta el temps com un nombre ordinari alhora que promou les coordenades espacials a operadors lineals.[10]

Electrodinàmica quàntica

modifica

La teoria quàntica de camps va començar pròpiament amb l'estudi de les interaccions electromagnètiques, ja que el camp electromagnètic era l'únic camp clàssic conegut a la dècada de 1920.[14]

A través dels treballs de Born, Heisenberg i Pascual Jordan el 1925–1926, es va desenvolupar una teoria quàntica del camp electromagnètic lliure (una sense interaccions amb la matèria) mitjançant la quantificació canònica tractant el camp electromagnètic com un conjunt d'oscil·ladors harmònics quàntics.[14] Amb l'exclusió de les interaccions, però, aquesta teoria encara era incapaç de fer prediccions quantitatives sobre el món real.[15]

En el seu article fonamental de 1927 The quantum theory of the emission and absorption of radiation (La teoria quàntica de l'emissió i absorció de radiació), Dirac va encunyar el terme electrodinàmica quàntica (QED), una teoria que afegeix un terme d'interacció addicional als termes que descriuen el camp electromagnètic lliure entre la densitat de corrent elèctrica i el potencial electromagnètic vectorial. Utilitzant la teoria de la perturbació de primer ordre, va explicar amb èxit el fenomen de l'emissió espontània. Segons el principi d'incertesa de la mecànica quàntica, els oscil·ladors harmònics quàntics no poden romandre estacionaris, però tenen una energia mínima diferent de zero i sempre han d'oscil·lar, fins i tot en l'estat d'energia més baix (l'estat fonamental). Per tant, fins i tot en un buit perfecte, queda un camp electromagnètic oscil·lant amb energia del punt zero. És aquesta fluctuació quàntica dels camps electromagnètics al buit la que "estimula" l'emissió espontània de radiació per part dels electrons dels àtoms. La teoria de Dirac va tenir un gran èxit a l'hora d'explicar tant l'emissió com l'absorció de radiació pels àtoms; mitjançant l'aplicació de la teoria de la pertorbació de segon ordre, va poder explicar la dispersió de fotons, la fluorescència de ressonància i la dispersió de Compton no relativista. No obstant això, l'aplicació de la teoria de la pertorbació d'ordre superior estava plagada d'infinits problemàtiques en els càlculs.[16]

El 1928, Dirac va escriure una equació d'ona que descrivia electrons relativistes: l'equació de Dirac. Va tenir les següents conseqüències importants: l'espín d'un electró és 1/2; el Factor g de l'electró és 2; va conduir a la fórmula correcta de Sommerfeld per a l'estructura fina de l'àtom d'hidrogen; i es podria utilitzar per derivar la fórmula de Klein-Nishina per a la dispersió relativista de Compton. Tot i que els resultats van ser fructífers, la teoria també aparentment implicava l'existència d'estats d'energia negativa, que farien que els àtoms fossin inestables, ja que sempre podrien desintegrar-se a estats d'energia més baixos per emissió de radiació.[17]

La visió predominant en aquell moment era que el món estava compost per dos ingredients molt diferents: partícules materials (com els electrons) i camps quàntics (com els fotons). Les partícules materials es consideraven eternes, amb el seu estat físic descrit per les probabilitats de trobar cada partícula en qualsevol regió determinada de l'espai o rang de velocitats. D'altra banda, els fotons eren considerats només els estats excitats del camp electromagnètic quantificat subjacent, i es podien crear o destruir lliurement. Va ser entre 1928 i 1930 que Jordan, Eugene Wigner, Heisenberg, Pauli i Enrico Fermi van descobrir que les partícules materials també es podien veure com estats excitats de camps quàntics. De la mateixa manera que els fotons són estats excitats del camp electromagnètic quantificat, cada tipus de partícula tenia el seu camp quàntic corresponent: un camp d'electrons, un camp de protons, etc. Amb l'energia necessària, seria possible crear partícules materials. Partint d'aquesta idea, Fermi va proposar el 1932 una explicació per a la Desintegració β coneguda com a interacció de Fermi. Els nuclis atòmics no contenen electrons per se, però en el procés de desintegració, es crea un electró a partir del camp electrònic circumdant, de manera anàloga al fotó creat a partir del camp electromagnètic circumdant en la desintegració radiativa d'un àtom excitat.[12]

L'any 1929 Dirac i altres es van adonar que els estats d'energia negativa implicats per l'equació de Dirac es podien eliminar assumint l'existència de partícules amb la mateixa massa que els electrons però amb càrrega elèctrica oposada. Això no només assegurava l'estabilitat dels àtoms, sinó que també va ser la primera proposta de l'existència de l'antimatèria. De fet, l'evidència dels positrons va ser descoberta l'any 1932 per Carl David Anderson als raigs còsmics. Amb prou energia, com per exemple la d'absorbir un fotó, es podria crear un parell electró-positró, un procés anomenat creació de parells; el procés invers, l'aniquilació, també es podria produir amb l'emissió d'un fotó. Això va demostrar que no cal fixar el nombre de partícules durant una interacció. Històricament, però, al principi es pensava que els positrons eren "forats" en un mar infinit d'electrons, en lloc d'un nou tipus de partícules, i aquesta teoria es coneixia com la teoria del forat de Dirac.[18][19] La TQC va incorporar de manera natural antipartícules en el seu formalisme.[20]

Referències

modifica
  1. Mehra i Rechenberg, 2001, p. 1099.
  2. Peskin i Schroeder, 1995, p. 198.
  3. Peskin i Schroeder, 1995, p. xi.
  4. Hobson, 2013, p. 4.
  5. Weinberg, 1977, p. 18.
  6. Hobson, 2013, p. 211–223.
  7. Heilbron, 2003, p. 301.
  8. Thomson, 1893, p. 2.
  9. Hobson, 2013, p. 19.
  10. 10,0 10,1 10,2 10,3 Weisskopf, 1981, p. 69–85.
  11. Heisenberg, 1999, Capítol 2.
  12. 12,0 12,1 Weinberg, 1977, p. 22–23.
  13. Weinberg, 1977, p. 19.
  14. 14,0 14,1 Shifman, 2012, p. 1.
  15. Weinberg, 1977, p. 22.
  16. Weisskopf, 1981, p. 71.
  17. Weisskopf, 1981, p. 71–72.
  18. Weisskopf, 1981, p. 72.
  19. Weinberg, 1977, p. 23.
  20. Weinberg, 1977, p. 24.

Bibliografia

modifica

Vegeu també

modifica