Fotó

partícula elemental
(S'ha redirigit des de: Fotons)

Un fotó és una partícula elemental, el quàntum de totes les formes de radiació electromagnètica, incloent la llum. És la partícula mediadora de la força electromagnètica, fins i tot quan està estàtic a través de fotons virtuals. El fotó té zero massa en repòs i conseqüentment les interaccions d'aquesta força fonamental són observables a escala tant microscòpica com macroscòpica. Com totes les partícules elementals, els fotons s'expliquen amb la mecànica quàntica però presenten dualitat ona-partícula, exhibint simultàniament propietats d'ones i de partícules. Per exemple, una lent pot refractar un sol fotó i en el procés interferir amb si mateix com si fos una ona, o pot actuar com una partícula que té una posició definida i una quantitat de moviment mesurable. Les propietats d'ona i de quàntum del fotó són dos aspectes observables d'un mateix fenomen i la seva naturalesa no pot ser descrita en termes de cap model mecànic,[2] per la qual cosa la representació d'aquesta propietat dual de la llum, que assumeix que l'energia es concentra a certs punts del front d'ona, és també impossible. Els quàntums en una ona de llum no es poden localitzar en l'espai; es pren nota d'alguns paràmetres físics definits del fotó.

Infotaula de partículaFotó
Fotons emesos en un raig coherent de làser
Classificacióbosó gauge, partícula sense massa, partícula elemental estable, partícula neutral real, Partícula mediadora, quàntum i partícula elemental Modifica el valor a Wikidata
ComposicióPartícula elemental
EstadísticaBosònica
GrupBosó de Gauge
InteraccionsElectromagnètica
Símbolγ, hν, or ħω
Antipartículafotó Modifica el valor a Wikidata
TeoritzacióAlbert Einstein
Descoberta1923 Modifica el valor a Wikidata
Massa0
<1×10−18 eV/c²[1]
Vida mitjanaEstable[1]
Desintegració encap valor Modifica el valor a Wikidata
Càrrega elèctrica0
<1×10−35 e[1]
Espín1
Paritat−1[1]
Paritat C−1[1]
CondensadaI(JPC)=0,1(1−−)[1]
SupercompanyaFotí
Número de partícula de Monte Carlo22 Modifica el valor a Wikidata

El concepte modern del fotó fou desenvolupat de forma gradual per Albert Einstein a principis del segle xx per explicar les observacions experimentals que no concordaven amb el model clàssic de la llum com a ona electromagnètica. El model del fotó quadrava amb el fet que l'energia de la llum depengués de la seva freqüència i explicava la capacitat de la matèria i la radiació electromagnètica d'estar en equilibri tèrmic. A més, el model del fotó també explicava certes observacions anòmales com ara la radiació del cos negre que altres físics, notablement Max Planck, havia intentat explicar emprant models semiclàssics. En el model de Planck, la llum estava descrita per les equacions de Maxwell però els objectes materials que emetien i absorbien llum ho feien en paquets discrets d'energia. Encara que aquests models semiclàssics contribuïren al desenvolupament de la mecànica quàntica, diversos experiments posteriors[3][4] començant per l'efecte Compton validaren la hipòtesi d'Einstein que la llum en si està quantificada. El 1926 el físic òptic Frithiof Wolfers i el químic Gilbert N. Lewis encunyaren el terme «fotó» per aquestes partícules. Després que Arthur H. Compton guanyés el Premi Nobel el 1927 pels seu estudis de dispersió, la majoria de científics acceptaren que els quàntums de la llum tenen una existència independent i s'acceptà el nom de fotó per aquests quàntums.

En el model estàndard de la física de partícules, els fotons i les altres partícules elementals es descriuen com una conseqüència necessària del fet que les lleis de la física tenguin una certa simetria en l'espaitemps. Les propietats intrínseques de les partícules, com la càrrega elèctrica, la massa i l'espín venen determinades per les propietats d'aquesta simetria de gauge. El concepte de fotó ha conduït a avenços transcendents en física teòrica i experimental, per exemple els làsers, el condensat de Bose-Einstein, la teoria quàntica de camps i la interpretació probabilística de la mecànica quàntica. S'ha aplicat en fotoquímica, en la microscòpia d'alta resolució i en la mesura de distàncies moleculars. Recentment, els fotons s'han estudiat com a element dels ordinadors quàntics i per les seves aplicacions en imatgeria òptica i comunicació òptica com la criptografia quàntica.

Aplicacions tecnològiques modifica

Els fotons tenen moltes aplicacions en tecnologia. Els exemples següents es trien per il·lustrar les aplicacions dels fotons "per se" en lloc de dispositius òptics generals com ara lents, etc. que podrien funcionar sota una teoria clàssica de la llum.

Els fotons individuals es poden detectar mitjançant diversos mètodes. El tub fotomultiplicador clàssic explota l'efecte fotoelèctric: un fotó d'energia suficient colpeja una placa metàl·lica i deixa lliure un electró, iniciant una allau d'electrons cada cop més amplificada. Els xips semiconductors de sensors CCD utilitzen un efecte similar: un fotó incident genera una càrrega en un condensador microscòpic que es pot detectar. Altres detectors com els comptador Geiger utilitzen la capacitat dels fotons per ionitzar les molècules de gas contingudes en el dispositiu, provocant un canvi detectable de la conductivitat del gas.[5]

La fórmula energètica de Planck   s'utilitza sovint per enginyers i químics en el disseny, tant per calcular el canvi d'energia resultant de l'absorció d'un fotó com per determinar la freqüència de la llum emesa per un fotó determinat. Per exemple, l'espectre d'emissió d'una làmpada de descàrrega de gas es pot alterar omplint-la amb (mescles de) gasos amb diferents nivells d'energia de configuracions electròniques.[6]

En algunes condicions, una transició energètica pot ser excitada per "dos" fotons que serien insuficients si actuessin individualment. Això permet una microscòpia de major resolució, perquè la mostra absorbeix energia només en l'espectre on dos feixos de diferents colors se superposen significativament, cosa que es pot fer a un nivell molt més petit que el volum d'excitació d'un sol feix. A més, aquests fotons causen menys danys a la mostra, ja que són de menor energia.[7]

En alguns casos, es poden acoblar dues transicions energètiques de manera que, a mesura que un sistema absorbeix un fotó, un altre sistema proper "robi" la seva energia i reemeti un fotó d'una freqüència diferent. Aquesta és la base de la transmissió d'energia de ressonància, una tècnica que s'utilitza en biologia molecular per estudiar la interacció de proteïnes adequades.[8]

Diversos tipus diferents de generadors de nombres aleatoris de maquinàries impliquen la detecció de fotons individuals. En un exemple, per a cada bit de la seqüència aleatòria que s'ha de produir, s'envia un fotó a un divisor de feix. En aquesta situació, hi ha dos possibles resultats d'igual probabilitat. El resultat real s'utilitza per determinar si el bit següent de la seqüència és "0" o "1".[9][10]

Referències modifica

  1. 1,0 1,1 1,2 1,3 1,4 1,5 Amsler, C. et al. (Particle Data Group) «Review of Particle Physics: Gauge and Higgs bosons». Physics Letters B, 667, 2008 +2009 partial update, pàg. 1. Bibcode: 2008PhLB..667....1P. DOI: 10.1016/j.physletb.2008.07.018.
  2. Joos, George. Theoretical Physics. London and Glasgow: Blackie and Son Limited, 1951, p. 679. 
  3. Kimble, H.J.; Dagenais, M.; Mandel, L.; Dagenais; Mandel «Photon Anti-bunching in Resonance Fluorescence». Physical Review Letters, 39, 11, 1977, pàg. 691–695. Bibcode: 1977PhRvL..39..691K. DOI: 10.1103/PhysRevLett.39.691.
  4. Grangier, P.; Roger, G.; Aspect, A.; Roger; Aspect «Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences». Europhysics Letters, 1, 4, 1986, pàg. 173–179. Bibcode: 1986EL......1..173G. DOI: 10.1209/0295-5075/1/4/004.
  5. Secció Photomultiplier 1.1.10, secció CCDs 1.1.8, secció Geiger counters 1.3.2.1 a Kitchin, C.R.. Astrophysical Techniques. Boca Raton, FL: CRC Press, 2008. ISBN 978-1-4200-8243-2. 
  6. Waymouth, John. Electric Discharge Lamps. Cambridge, MA: The M.I.T. Press, 1971. ISBN 978-0-262-23048-3. 
  7. «Photon upmanship: Why multiphoton imaging is more than a gimmick». Neuron, 18, 3, 1997, pàg. 351–357. DOI: 10.1016/S0896-6273(00)81237-4. PMID: 9115730.
  8. Lakowicz, J.R.. [Fotó, p. 529, a Google Books Principles of Fluorescence Spectroscopy]. Springer, 2006, p. 529 ff. ISBN 978-0-387-31278-1. 
  9. Jennewein, T.; Achleitner, U.; Weihs, G.; Weinfurter, H.; Zeilinger, A. «A fast and compact quantum random number generator». Review of Scientific Instruments, 71, 4, 2000, pàg. 1675–1680. arXiv: quant-ph/9912118. Bibcode: 2000RScI...71.1675J. DOI: 10.1063/1.1150518.
  10. Stefanov, A.; Gisin, N.; Guinnard, O.; Guinnard, L.; Zbiden, H. «Optical quantum random number generator». Journal of Modern Optics, 47, 4, 2000, pàg. 595–598. DOI: 10.1080/095003400147908.

Vegeu també modifica

A Wikimedia Commons hi ha contingut multimèdia relatiu a: Fotó