Operació
Coordenades cartesianes (x , y , z )
Coordenades cilíndriques (ρ , φ , z )
Coordenades esfèriques (r , θ , φ ) , on θ és l'angle polar i φ és l'angle azimutalα
Un camp vectorial A
A
x
x
^
+
A
y
y
^
+
A
z
z
^
{\displaystyle A_{x}{\hat {\mathbf {x} }}+A_{y}{\hat {\mathbf {y} }}+A_{z}{\hat {\mathbf {z} }}}
A
ρ
ρ
^
+
A
φ
φ
^
+
A
z
z
^
{\displaystyle A_{\rho }{\hat {\boldsymbol {\rho }}}+A_{\varphi }{\hat {\boldsymbol {\varphi }}}+A_{z}{\hat {\mathbf {z} }}}
A
r
r
^
+
A
θ
θ
^
+
A
φ
φ
^
{\displaystyle A_{r}{\hat {\mathbf {r} }}+A_{\theta }{\hat {\boldsymbol {\theta }}}+A_{\varphi }{\hat {\boldsymbol {\varphi }}}}
Gradient ∇f
∂
f
∂
x
x
^
+
∂
f
∂
y
y
^
+
∂
f
∂
z
z
^
{\displaystyle {\partial f \over \partial x}{\hat {\mathbf {x} }}+{\partial f \over \partial y}{\hat {\mathbf {y} }}+{\partial f \over \partial z}{\hat {\mathbf {z} }}}
∂
f
∂
ρ
ρ
^
+
1
ρ
∂
f
∂
φ
φ
^
+
∂
f
∂
z
z
^
{\displaystyle {\partial f \over \partial \rho }{\hat {\boldsymbol {\rho }}}+{1 \over \rho }{\partial f \over \partial \varphi }{\hat {\boldsymbol {\varphi }}}+{\partial f \over \partial z}{\hat {\mathbf {z} }}}
∂
f
∂
r
r
^
+
1
r
∂
f
∂
θ
θ
^
+
1
r
sin
θ
∂
f
∂
φ
φ
^
{\displaystyle {\partial f \over \partial r}{\hat {\mathbf {r} }}+{1 \over r}{\partial f \over \partial \theta }{\hat {\boldsymbol {\theta }}}+{1 \over r\sin \theta }{\partial f \over \partial \varphi }{\hat {\boldsymbol {\varphi }}}}
Divergència ∇ ⋅ A
∂
A
x
∂
x
+
∂
A
y
∂
y
+
∂
A
z
∂
z
{\displaystyle {\partial A_{x} \over \partial x}+{\partial A_{y} \over \partial y}+{\partial A_{z} \over \partial z}}
1
ρ
∂
(
ρ
A
ρ
)
∂
ρ
+
1
ρ
∂
A
φ
∂
φ
+
∂
A
z
∂
z
{\displaystyle {1 \over \rho }{\partial \left(\rho A_{\rho }\right) \over \partial \rho }+{1 \over \rho }{\partial A_{\varphi } \over \partial \varphi }+{\partial A_{z} \over \partial z}}
1
r
2
∂
(
r
2
A
r
)
∂
r
+
1
r
sin
θ
∂
∂
θ
(
A
θ
sin
θ
)
+
1
r
sin
θ
∂
A
φ
∂
φ
{\displaystyle {1 \over r^{2}}{\partial \left(r^{2}A_{r}\right) \over \partial r}+{1 \over r\sin \theta }{\partial \over \partial \theta }\left(A_{\theta }\sin \theta \right)+{1 \over r\sin \theta }{\partial A_{\varphi } \over \partial \varphi }}
Rotacional ∇ × A
(
∂
A
z
∂
y
−
∂
A
y
∂
z
)
x
^
+
(
∂
A
x
∂
z
−
∂
A
z
∂
x
)
y
^
+
(
∂
A
y
∂
x
−
∂
A
x
∂
y
)
z
^
{\displaystyle {\begin{aligned}\left({\frac {\partial A_{z}}{\partial y}}-{\frac {\partial A_{y}}{\partial z}}\right)&{\hat {\mathbf {x} }}\\+\left({\frac {\partial A_{x}}{\partial z}}-{\frac {\partial A_{z}}{\partial x}}\right)&{\hat {\mathbf {y} }}\\+\left({\frac {\partial A_{y}}{\partial x}}-{\frac {\partial A_{x}}{\partial y}}\right)&{\hat {\mathbf {z} }}\end{aligned}}}
(
1
ρ
∂
A
z
∂
φ
−
∂
A
φ
∂
z
)
ρ
^
+
(
∂
A
ρ
∂
z
−
∂
A
z
∂
ρ
)
φ
^
+
1
ρ
(
∂
(
ρ
A
φ
)
∂
ρ
−
∂
A
ρ
∂
φ
)
z
^
{\displaystyle {\begin{aligned}\left({\frac {1}{\rho }}{\frac {\partial A_{z}}{\partial \varphi }}-{\frac {\partial A_{\varphi }}{\partial z}}\right)&{\hat {\boldsymbol {\rho }}}\\+\left({\frac {\partial A_{\rho }}{\partial z}}-{\frac {\partial A_{z}}{\partial \rho }}\right)&{\hat {\boldsymbol {\varphi }}}\\{}+{\frac {1}{\rho }}\left({\frac {\partial \left(\rho A_{\varphi }\right)}{\partial \rho }}-{\frac {\partial A_{\rho }}{\partial \varphi }}\right)&{\hat {\mathbf {z} }}\end{aligned}}}
1
r
sin
θ
(
∂
∂
θ
(
A
φ
sin
θ
)
−
∂
A
θ
∂
φ
)
r
^
+
1
r
(
1
sin
θ
∂
A
r
∂
φ
−
∂
∂
r
(
r
A
φ
)
)
θ
^
+
1
r
(
∂
∂
r
(
r
A
θ
)
−
∂
A
r
∂
θ
)
φ
^
{\displaystyle {\begin{aligned}{\frac {1}{r\sin \theta }}\left({\frac {\partial }{\partial \theta }}\left(A_{\varphi }\sin \theta \right)-{\frac {\partial A_{\theta }}{\partial \varphi }}\right)&{\hat {\mathbf {r} }}\\{}+{\frac {1}{r}}\left({\frac {1}{\sin \theta }}{\frac {\partial A_{r}}{\partial \varphi }}-{\frac {\partial }{\partial r}}\left(rA_{\varphi }\right)\right)&{\hat {\boldsymbol {\theta }}}\\{}+{\frac {1}{r}}\left({\frac {\partial }{\partial r}}\left(rA_{\theta }\right)-{\frac {\partial A_{r}}{\partial \theta }}\right)&{\hat {\boldsymbol {\varphi }}}\end{aligned}}}
Operador laplacià ∇²f ≡ ∆f
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
+
∂
2
f
∂
z
2
{\displaystyle {\partial ^{2}f \over \partial x^{2}}+{\partial ^{2}f \over \partial y^{2}}+{\partial ^{2}f \over \partial z^{2}}}
1
ρ
∂
∂
ρ
(
ρ
∂
f
∂
ρ
)
+
1
ρ
2
∂
2
f
∂
φ
2
+
∂
2
f
∂
z
2
{\displaystyle {1 \over \rho }{\partial \over \partial \rho }\left(\rho {\partial f \over \partial \rho }\right)+{1 \over \rho ^{2}}{\partial ^{2}f \over \partial \varphi ^{2}}+{\partial ^{2}f \over \partial z^{2}}}
1
r
2
∂
∂
r
(
r
2
∂
f
∂
r
)
+
1
r
2
sin
θ
∂
∂
θ
(
sin
θ
∂
f
∂
θ
)
+
1
r
2
sin
2
θ
∂
2
f
∂
φ
2
{\displaystyle {1 \over r^{2}}{\partial \over \partial r}\!\left(r^{2}{\partial f \over \partial r}\right)\!+\!{1 \over r^{2}\!\sin \theta }{\partial \over \partial \theta }\!\left(\sin \theta {\partial f \over \partial \theta }\right)\!+\!{1 \over r^{2}\!\sin ^{2}\theta }{\partial ^{2}f \over \partial \varphi ^{2}}}
Vector laplacià ∇²A ≡ ∆A
∇
2
A
x
x
^
+
∇
2
A
y
y
^
+
∇
2
A
z
z
^
{\displaystyle \nabla ^{2}A_{x}{\hat {\mathbf {x} }}+\nabla ^{2}A_{y}{\hat {\mathbf {y} }}+\nabla ^{2}A_{z}{\hat {\mathbf {z} }}}
(
∇
2
A
ρ
−
A
ρ
ρ
2
−
2
ρ
2
∂
A
φ
∂
φ
)
ρ
^
+
(
∇
2
A
φ
−
A
φ
ρ
2
+
2
ρ
2
∂
A
ρ
∂
φ
)
φ
^
+
∇
2
A
z
z
^
{\displaystyle {\begin{aligned}{\mathopen {}}\left(\nabla ^{2}A_{\rho }-{\frac {A_{\rho }}{\rho ^{2}}}-{\frac {2}{\rho ^{2}}}{\frac {\partial A_{\varphi }}{\partial \varphi }}\right){\mathclose {}}&{\hat {\boldsymbol {\rho }}}\\+{\mathopen {}}\left(\nabla ^{2}A_{\varphi }-{\frac {A_{\varphi }}{\rho ^{2}}}+{\frac {2}{\rho ^{2}}}{\frac {\partial A_{\rho }}{\partial \varphi }}\right){\mathclose {}}&{\hat {\boldsymbol {\varphi }}}\\{}+\nabla ^{2}A_{z}&{\hat {\mathbf {z} }}\end{aligned}}}
(
∇
2
A
r
−
2
A
r
r
2
−
2
r
2
sin
θ
∂
(
A
θ
sin
θ
)
∂
θ
−
2
r
2
sin
θ
∂
A
φ
∂
φ
)
r
^
+
(
∇
2
A
θ
−
A
θ
r
2
sin
2
θ
+
2
r
2
∂
A
r
∂
θ
−
2
cos
θ
r
2
sin
2
θ
∂
A
φ
∂
φ
)
θ
^
+
(
∇
2
A
φ
−
A
φ
r
2
sin
2
θ
+
2
r
2
sin
θ
∂
A
r
∂
φ
+
2
cos
θ
r
2
sin
2
θ
∂
A
θ
∂
φ
)
φ
^
{\displaystyle {\begin{aligned}\left(\nabla ^{2}A_{r}-{\frac {2A_{r}}{r^{2}}}-{\frac {2}{r^{2}\sin \theta }}{\frac {\partial \left(A_{\theta }\sin \theta \right)}{\partial \theta }}-{\frac {2}{r^{2}\sin \theta }}{\frac {\partial A_{\varphi }}{\partial \varphi }}\right)&{\hat {\mathbf {r} }}\\+\left(\nabla ^{2}A_{\theta }-{\frac {A_{\theta }}{r^{2}\sin ^{2}\theta }}+{\frac {2}{r^{2}}}{\frac {\partial A_{r}}{\partial \theta }}-{\frac {2\cos \theta }{r^{2}\sin ^{2}\theta }}{\frac {\partial A_{\varphi }}{\partial \varphi }}\right)&{\hat {\boldsymbol {\theta }}}\\+\left(\nabla ^{2}A_{\varphi }-{\frac {A_{\varphi }}{r^{2}\sin ^{2}\theta }}+{\frac {2}{r^{2}\sin \theta }}{\frac {\partial A_{r}}{\partial \varphi }}+{\frac {2\cos \theta }{r^{2}\sin ^{2}\theta }}{\frac {\partial A_{\theta }}{\partial \varphi }}\right)&{\hat {\boldsymbol {\varphi }}}\end{aligned}}}
Derivada materialα [ 1] (A ⋅ ∇)B
A
⋅
∇
B
x
x
^
+
A
⋅
∇
B
y
y
^
+
A
⋅
∇
B
z
z
^
{\displaystyle \mathbf {A} \cdot \nabla B_{x}{\hat {\mathbf {x} }}+\mathbf {A} \cdot \nabla B_{y}{\hat {\mathbf {y} }}+\mathbf {A} \cdot \nabla B_{z}{\hat {\mathbf {z} }}}
(
A
ρ
∂
B
ρ
∂
ρ
+
A
φ
ρ
∂
B
ρ
∂
φ
+
A
z
∂
B
ρ
∂
z
−
A
φ
B
φ
ρ
)
ρ
^
+
(
A
ρ
∂
B
φ
∂
ρ
+
A
φ
ρ
∂
B
φ
∂
φ
+
A
z
∂
B
φ
∂
z
+
A
φ
B
ρ
ρ
)
φ
^
+
(
A
ρ
∂
B
z
∂
ρ
+
A
φ
ρ
∂
B
z
∂
φ
+
A
z
∂
B
z
∂
z
)
z
^
{\displaystyle {\begin{aligned}\left(A_{\rho }{\frac {\partial B_{\rho }}{\partial \rho }}+{\frac {A_{\varphi }}{\rho }}{\frac {\partial B_{\rho }}{\partial \varphi }}+A_{z}{\frac {\partial B_{\rho }}{\partial z}}-{\frac {A_{\varphi }B_{\varphi }}{\rho }}\right)&{\hat {\boldsymbol {\rho }}}\\+\left(A_{\rho }{\frac {\partial B_{\varphi }}{\partial \rho }}+{\frac {A_{\varphi }}{\rho }}{\frac {\partial B_{\varphi }}{\partial \varphi }}+A_{z}{\frac {\partial B_{\varphi }}{\partial z}}+{\frac {A_{\varphi }B_{\rho }}{\rho }}\right)&{\hat {\boldsymbol {\varphi }}}\\+\left(A_{\rho }{\frac {\partial B_{z}}{\partial \rho }}+{\frac {A_{\varphi }}{\rho }}{\frac {\partial B_{z}}{\partial \varphi }}+A_{z}{\frac {\partial B_{z}}{\partial z}}\right)&{\hat {\mathbf {z} }}\end{aligned}}}
(
A
r
∂
B
r
∂
r
+
A
θ
r
∂
B
r
∂
θ
+
A
φ
r
sin
θ
∂
B
r
∂
φ
−
A
θ
B
θ
+
A
φ
B
φ
r
)
r
^
+
(
A
r
∂
B
θ
∂
r
+
A
θ
r
∂
B
θ
∂
θ
+
A
φ
r
sin
θ
∂
B
θ
∂
φ
+
A
θ
B
r
r
−
A
φ
B
φ
cot
θ
r
)
θ
^
+
(
A
r
∂
B
φ
∂
r
+
A
θ
r
∂
B
φ
∂
θ
+
A
φ
r
sin
θ
∂
B
φ
∂
φ
+
A
φ
B
r
r
+
A
φ
B
θ
cot
θ
r
)
φ
^
{\displaystyle {\begin{aligned}\left(A_{r}{\frac {\partial B_{r}}{\partial r}}+{\frac {A_{\theta }}{r}}{\frac {\partial B_{r}}{\partial \theta }}+{\frac {A_{\varphi }}{r\sin \theta }}{\frac {\partial B_{r}}{\partial \varphi }}-{\frac {A_{\theta }B_{\theta }+A_{\varphi }B_{\varphi }}{r}}\right)&{\hat {\mathbf {r} }}\\+\left(A_{r}{\frac {\partial B_{\theta }}{\partial r}}+{\frac {A_{\theta }}{r}}{\frac {\partial B_{\theta }}{\partial \theta }}+{\frac {A_{\varphi }}{r\sin \theta }}{\frac {\partial B_{\theta }}{\partial \varphi }}+{\frac {A_{\theta }B_{r}}{r}}-{\frac {A_{\varphi }B_{\varphi }\cot \theta }{r}}\right)&{\hat {\boldsymbol {\theta }}}\\+\left(A_{r}{\frac {\partial B_{\varphi }}{\partial r}}+{\frac {A_{\theta }}{r}}{\frac {\partial B_{\varphi }}{\partial \theta }}+{\frac {A_{\varphi }}{r\sin \theta }}{\frac {\partial B_{\varphi }}{\partial \varphi }}+{\frac {A_{\varphi }B_{r}}{r}}+{\frac {A_{\varphi }B_{\theta }\cot \theta }{r}}\right)&{\hat {\boldsymbol {\varphi }}}\end{aligned}}}
Tensor de divergència ∇ ⋅ T
(
∂
T
x
x
∂
x
+
∂
T
y
x
∂
y
+
∂
T
z
x
∂
z
)
x
^
+
(
∂
T
x
y
∂
x
+
∂
T
y
y
∂
y
+
∂
T
z
y
∂
z
)
y
^
+
(
∂
T
x
z
∂
x
+
∂
T
y
z
∂
y
+
∂
T
z
z
∂
z
)
z
^
{\displaystyle {\begin{aligned}\left({\frac {\partial T_{xx}}{\partial x}}+{\frac {\partial T_{yx}}{\partial y}}+{\frac {\partial T_{zx}}{\partial z}}\right)&{\hat {\mathbf {x} }}\\+\left({\frac {\partial T_{xy}}{\partial x}}+{\frac {\partial T_{yy}}{\partial y}}+{\frac {\partial T_{zy}}{\partial z}}\right)&{\hat {\mathbf {y} }}\\+\left({\frac {\partial T_{xz}}{\partial x}}+{\frac {\partial T_{yz}}{\partial y}}+{\frac {\partial T_{zz}}{\partial z}}\right)&{\hat {\mathbf {z} }}\end{aligned}}}
[
∂
T
ρ
ρ
∂
ρ
+
1
ρ
∂
T
φ
ρ
∂
φ
+
∂
T
z
ρ
∂
z
+
1
ρ
(
T
ρ
ρ
−
T
φ
φ
)
]
ρ
^
+
[
∂
T
ρ
φ
∂
ρ
+
1
ρ
∂
T
φ
φ
∂
φ
+
∂
T
z
φ
∂
z
+
1
ρ
(
T
ρ
φ
+
T
φ
ρ
)
]
φ
^
+
[
∂
T
ρ
z
∂
ρ
+
1
ρ
∂
T
φ
z
∂
φ
+
∂
T
z
z
∂
z
+
T
ρ
z
ρ
]
z
^
{\displaystyle {\begin{aligned}\left[{\frac {\partial T_{\rho \rho }}{\partial \rho }}+{\frac {1}{\rho }}{\frac {\partial T_{\varphi \rho }}{\partial \varphi }}+{\frac {\partial T_{z\rho }}{\partial z}}+{\frac {1}{\rho }}(T_{\rho \rho }-T_{\varphi \varphi })\right]&{\hat {\boldsymbol {\rho }}}\\+\left[{\frac {\partial T_{\rho \varphi }}{\partial \rho }}+{\frac {1}{\rho }}{\frac {\partial T_{\varphi \varphi }}{\partial \varphi }}+{\frac {\partial T_{z\varphi }}{\partial z}}+{\frac {1}{\rho }}(T_{\rho \varphi }+T_{\varphi \rho })\right]&{\hat {\boldsymbol {\varphi }}}\\+\left[{\frac {\partial T_{\rho z}}{\partial \rho }}+{\frac {1}{\rho }}{\frac {\partial T_{\varphi z}}{\partial \varphi }}+{\frac {\partial T_{zz}}{\partial z}}+{\frac {T_{\rho z}}{\rho }}\right]&{\hat {\mathbf {z} }}\end{aligned}}}
[
∂
T
r
r
∂
r
+
2
T
r
r
r
+
1
r
∂
T
θ
r
∂
θ
+
cot
θ
r
T
θ
r
+
1
r
sin
θ
∂
T
φ
r
∂
φ
−
1
r
(
T
θ
θ
+
T
φ
φ
)
]
r
^
+
[
∂
T
r
θ
∂
r
+
2
T
r
θ
r
+
1
r
∂
T
θ
θ
∂
θ
+
cot
θ
r
T
θ
θ
+
1
r
sin
θ
∂
T
φ
θ
∂
φ
+
T
θ
r
r
−
cot
θ
r
T
φ
φ
]
θ
^
+
[
∂
T
r
φ
∂
r
+
2
T
r
φ
r
+
1
r
∂
T
θ
φ
∂
θ
+
1
r
sin
θ
∂
T
φ
φ
∂
φ
+
T
φ
r
r
+
cot
θ
r
(
T
θ
φ
+
T
φ
θ
)
]
φ
^
{\displaystyle {\begin{aligned}\left[{\frac {\partial T_{rr}}{\partial r}}+2{\frac {T_{rr}}{r}}+{\frac {1}{r}}{\frac {\partial T_{\theta r}}{\partial \theta }}+{\frac {\cot \theta }{r}}T_{\theta r}+{\frac {1}{r\sin \theta }}{\frac {\partial T_{\varphi r}}{\partial \varphi }}-{\frac {1}{r}}(T_{\theta \theta }+T_{\varphi \varphi })\right]&{\hat {\mathbf {r} }}\\+\left[{\frac {\partial T_{r\theta }}{\partial r}}+2{\frac {T_{r\theta }}{r}}+{\frac {1}{r}}{\frac {\partial T_{\theta \theta }}{\partial \theta }}+{\frac {\cot \theta }{r}}T_{\theta \theta }+{\frac {1}{r\sin \theta }}{\frac {\partial T_{\varphi \theta }}{\partial \varphi }}+{\frac {T_{\theta r}}{r}}-{\frac {\cot \theta }{r}}T_{\varphi \varphi }\right]&{\hat {\boldsymbol {\theta }}}\\+\left[{\frac {\partial T_{r\varphi }}{\partial r}}+2{\frac {T_{r\varphi }}{r}}+{\frac {1}{r}}{\frac {\partial T_{\theta \varphi }}{\partial \theta }}+{\frac {1}{r\sin \theta }}{\frac {\partial T_{\varphi \varphi }}{\partial \varphi }}+{\frac {T_{\varphi r}}{r}}+{\frac {\cot \theta }{r}}(T_{\theta \varphi }+T_{\varphi \theta })\right]&{\hat {\boldsymbol {\varphi }}}\end{aligned}}}
Desplaçament diferencial dℓ
d
x
x
^
+
d
y
y
^
+
d
z
z
^
{\displaystyle dx\,{\hat {\mathbf {x} }}+dy\,{\hat {\mathbf {y} }}+dz\,{\hat {\mathbf {z} }}}
d
ρ
ρ
^
+
ρ
d
φ
φ
^
+
d
z
z
^
{\displaystyle d\rho \,{\hat {\boldsymbol {\rho }}}+\rho \,d\varphi \,{\hat {\boldsymbol {\varphi }}}+dz\,{\hat {\mathbf {z} }}}
d
r
r
^
+
r
d
θ
θ
^
+
r
sin
θ
d
φ
φ
^
{\displaystyle dr\,{\hat {\mathbf {r} }}+r\,d\theta \,{\hat {\boldsymbol {\theta }}}+r\,\sin \theta \,d\varphi \,{\hat {\boldsymbol {\varphi }}}}
Normal d'àrea diferencial d S
d
y
d
z
x
^
+
d
x
d
z
y
^
+
d
x
d
y
z
^
{\displaystyle {\begin{aligned}dy\,dz&\,{\hat {\mathbf {x} }}\\{}+dx\,dz&\,{\hat {\mathbf {y} }}\\{}+dx\,dy&\,{\hat {\mathbf {z} }}\end{aligned}}}
ρ
d
φ
d
z
ρ
^
+
d
ρ
d
z
φ
^
+
ρ
d
ρ
d
φ
z
^
{\displaystyle {\begin{aligned}\rho \,d\varphi \,dz&\,{\hat {\boldsymbol {\rho }}}\\{}+d\rho \,dz&\,{\hat {\boldsymbol {\varphi }}}\\{}+\rho \,d\rho \,d\varphi &\,{\hat {\mathbf {z} }}\end{aligned}}}
r
2
sin
θ
d
θ
d
φ
r
^
+
r
sin
θ
d
r
d
φ
θ
^
+
r
d
r
d
θ
φ
^
{\displaystyle {\begin{aligned}r^{2}\sin \theta \,d\theta \,d\varphi &\,{\hat {\mathbf {r} }}\\{}+r\sin \theta \,dr\,d\varphi &\,{\hat {\boldsymbol {\theta }}}\\{}+r\,dr\,d\theta &\,{\hat {\boldsymbol {\varphi }}}\end{aligned}}}
Volum diferencial dV
d
x
d
y
d
z
{\displaystyle dx\,dy\,dz}
ρ
d
ρ
d
φ
d
z
{\displaystyle \rho \,d\rho \,d\varphi \,dz}
r
2
sin
θ
d
r
d
θ
d
φ
{\displaystyle r^{2}\sin \theta \,dr\,d\theta \,d\varphi }