Teoria de les grans desviacions

branca de la teoria de la probabilitat

En teoria de la probabilitat, la teoria de les grans desviacions es refereix al comportament asimptòtic de les cues remotes de seqüències de distribucions de probabilitat. Mentre que algunes idees bàsiques de la teoria es poden rastrejar a Laplace, la formalització va començar amb les matemàtiques d'assegurances, és a dir, la teoria de la ruïna amb Cramér i Lundberg. Una formalització unificada de la teoria de la gran desviació es va desenvolupar el 1966, en un article de Varadhan.[1] La teoria de grans desviacions formalitza les idees heurístiques de concentració de mesures i generalitza àmpliament la noció de convergència de mesures de probabilitat.[2]

A grans trets, la teoria de les grans desviacions es refereix a la disminució exponencial de les mesures de probabilitat de certs tipus d'esdeveniments extrems o de cua.[3]

Exemples introductoris

modifica

Un exemple elemental

modifica

Considerant una seqüència de llançaments independents d'una moneda justa. Els possibles resultats podrien ser cap o cua. Denotant el possible resultat de l'i-è assaig per  , on es codifica el cap com a 1 i la cua com a 0. Ara es fa   i el valor mitjà després   assaigs, és a dir

 .

Aleshores   està entre 0 i 1. De la llei dels grans nombres es dedueix que a mesura que N creix, la distribució de   convergeix a   (el valor esperat d'un sol llançament de moneda).

A més, pel teorema central del límit, es dedueix que   es distribueix aproximadament normalment per a grans  . El teorema del límit central pot proporcionar informació més detallada sobre el comportament de   que la llei dels grans nombres. Per exemple, podem trobar aproximadament una probabilitat de cua de  ,  , això   és més gran que  , per un valor fix de  . Tanmateix, l'aproximació pel teorema del límit central pot no ser precisa si   està lluny de   tret que   és prou gran. A més, no proporciona informació sobre la convergència de les probabilitats de la cua quan  . Tanmateix, la teoria de la gran desviació pot donar respostes a aquests problemes.

Grans desviacions per a sumes de variables aleatòries independents

modifica

En l'exemple anterior de llançament de monedes vam assumir explícitament que cada llançament és una prova independent i la probabilitat d'aconseguir cap o cua és sempre la mateixa.

Si   ser independents i idènticament distribuïdes (iid) variables aleatòries la distribució comuna de les quals compleix una determinada condició de creixement. Aleshores existeix el següent límit:

 .

Aquí

 ,

com abans.

Funció   s'anomena " funció de velocitat " o "funció de Cramér" o de vegades "funció d'entropia".

Definició formal

modifica

Donat un espai polonès   deixar   ser una seqüència de mesures de probabilitat de Borel  , deixar   ser una successió de nombres reals positius tal que  , i finalment deixar   ser un funcional semicontinu inferior   La seqüència   es diu que satisfà un principi de gran desviació amb la velocitat   i taxa   si, i només si, per a cada conjunt mesurable de Borel  ,

 ,

on   i   denoten respectivament el tancament i l'interior d' .

Història breu

modifica

Els primers resultats rigorosos sobre grans desviacions es deuen al matemàtic suec Harald Cramér, que els va aplicar per modelar el negoci de les assegurances. Des del punt de vista d'una companyia d'assegurances, els guanys són a un ritme constant per mes (la prima mensual) però les reclamacions es produeixen de manera aleatòria. Perquè l'empresa tingui èxit durant un període de temps determinat (preferiblement molts mesos), els guanys totals han de superar el total de la reclamació. Així, per estimar la prima cal fer la següent pregunta: "Què hem de triar com a prima   tal que s'ha acabat   mesos la reclamació total   hauria de ser inferior a  ?" Aquesta és clarament la mateixa pregunta que fa la teoria de les grans desviacions. Cramér va donar una solució a aquesta pregunta per a variables aleatòries iid, on la funció de velocitat s'expressa com una sèrie de potències.

Aplicacions

modifica

Els principis de grans desviacions es poden aplicar eficaçment per recopilar informació d'un model probabilístic. Així, la teoria de les grans desviacions troba les seves aplicacions en la teoria de la informació i la gestió del risc. En física, l'aplicació més coneguda de la teoria de les grans desviacions sorgeix en la termodinàmica i la mecànica estadística (en relació amb la relació de l'entropia amb la funció de velocitat).[4]

Referències

modifica
  1. S.R.S. Varadhan, Asymptotic probability and differential equations, Comm. Pure Appl. Math. 19 (1966),261-286.
  2. «Lectures on the Large Deviation Principle» (en anglès). [Consulta: 18 febrer 2024].
  3. «A basic introduction to large deviations: Theory, applications, simulations» (en anglès). [Consulta: 18 febrer 2024].
  4. «MA4L3 - Large Deviation Theory» (en anglès). [Consulta: 18 febrer 2024].