Producte escalar
En les matemàtiques, un producte escalar —també conegut com a producte interior o punt— és una operació algebraica entre dos vectors que resulta en un escalar. Aquesta operació permet treballar i estendre les nocions de la geometria euclidiana com ara la norma, l'angle o la distància en espais vectorials de dimensió més gran que tres o sobre el cos del complexos.
Definició del producte escalarModifica
Sigui un espai vectorial real. Un producte escalar a és una forma bilineal simètrica:
definida positiva. És a dir, que compleix
Si és un espai vectorial complex, un producte escalar és una forma sesquilineal hermítica:
definida positiva.
El conjunt format per un espai vectorial i un producte escalar determina una estructura algebraica anomenada espai euclidià. Cal notar que diferents productes escalars sobre un mateix espai vectorial determinen diferents espais euclidians i que conceptes com ara l'angle, la norma euclidiana o la distància depenen del producte escalar definit.
Definició del producte escalar usual o canònic a ℝnModifica
Un producte escalar especialment important pel seu ús a la Física i a la Geometria euclidiana és l'anomenat producte escalar usual o canònic sobre l'espai vectorial .
El producte escalar de dos vectors i pertanyents a és un escalar en ℝ definit com:
On θ és l'angle no orientat entre els dos vectors i i són els mòduls dels vectors.
La notació habitual és el punt per distingir-lo de l'aspa o el circumflex que s'usen per al producte vectorial de dos vectors.
En el cas que els vectors estiguin expressats com a coordenades en una base ortonormal això és, ortogonal i unitària (és a dir, base amb vectors de mòdul = 1 i que són perpendiculars entres si), el producte escalar també pot calcular-se a partir de dites coordenades com:
Per exemple, el producte escalar de dos vectors en [1, 4, -3] i [2, −1, -2] és:
Usant el producte matricial i tractant els vectors columna com matrius n×1, el producte escalar es pot escriure com:
on AT denota la transposada de la matriu A.
Usant l'exemple anterior, això resultaria en una matriu 1×3 (vector fila) multiplicat per un vector 3×1 (que com a multiplicació de matrius resultaria en una matriu 1×1, és a dir un escalar):
Interpretació geomètricaModifica
A l'espai euclidià hi ha una forta relació entre el producte escalar, les longituds dels vectors i l'angle que formen.
De l'equació abans esmentada:
es deriva que l'angle entre els dos vectors és:
Com cos 90° = 0, si els vectors són ortogonals, el seu producte escalar és nul.
El mòdul d'un vector es pot trobar com:
El mòdul correspon a la longitud del vector.
Com és la projecció escalar del vector sobre el vector , el producte escalar es pot entendre com el producte d'aquesta projecció per la longitud de .
Propietats del producte escalarModifica
La propietat associativa no té sentit pel producte escalar perquè l'operació és indefinida, ja que és un escalar.
Malgrat tot, el producte escalar té la següent propietat:
on m és un escalar.
El producte escalar és invariant a rotacions dels vectors.
Enllaços externsModifica
A Wikimedia Commons hi ha contingut multimèdia relatiu a: Producte escalar |
- «Dot product» (en anglès). http://mathworld.wolfram.com/.+[Consulta: 19 novembre 2013].