Producte escalar
En les matemàtiques, un producte escalar —també conegut com a producte interior o punt— és una operació algebraica entre dos vectors que resulta en un escalar. Aquesta operació permet treballar i estendre les nocions de la geometria euclidiana com ara la norma, l'angle o la distància en espais vectorials de dimensió més gran que tres o sobre el cos del complexos.
Definició del producte escalar
modificaSigui un espai vectorial real. Un producte escalar a és una forma bilineal simètrica:
definida positiva. És a dir, que compleix
Si és un espai vectorial complex, un producte escalar és una forma sesquilineal hermítica:
definida positiva.
El conjunt format per un espai vectorial i un producte escalar determina una estructura algebraica anomenada espai euclidià. Cal notar que diferents productes escalars sobre un mateix espai vectorial determinen diferents espais euclidians i que conceptes com ara l'angle, la norma euclidiana o la distància depenen del producte escalar definit.
Definició del producte escalar usual o canònic a ℝn
modificaUn producte escalar especialment important pel seu ús a la Física i a la Geometria euclidiana és l'anomenat producte escalar usual o canònic sobre l'espai vectorial .
El producte escalar de dos vectors i pertanyents a és un escalar en ℝ definit com:
On θ és l'angle no orientat entre els dos vectors i i són els mòduls dels vectors.
La notació habitual és el punt per distingir-lo de l'aspa o el circumflex que s'usen per al producte vectorial de dos vectors.
En el cas que els vectors estiguin expressats com a coordenades en una base ortonormal això és, ortogonal i unitària (és a dir, base amb vectors de mòdul = 1 i que són perpendiculars entres si), el producte escalar també pot calcular-se a partir de dites coordenades com:
Per exemple, el producte escalar de dos vectors en [1, 4, -3] i [2, −1, -2] és:
Usant el producte matricial i tractant els vectors columna com matrius n×1, el producte escalar es pot escriure com:
on AT denota la transposada de la matriu A.
Usant l'exemple anterior, això resultaria en una matriu 1×3 (vector fila) multiplicat per un vector 3×1 (que com a multiplicació de matrius resultaria en una matriu 1×1, és a dir un escalar):
Més generalment, el producte escalar de dos vectors de dimensions i , especificat en termes d'una base ortonormal, és definit com:[1]
on denotea el sumatori i és la dimensió de l'espai vectorial.
Interpretació geomètrica
modificaA l'espai euclidià hi ha una forta relació entre el producte escalar, les longituds dels vectors i l'angle que formen.
De l'equació abans esmentada:[2][3][4]
es deriva que l'angle entre els dos vectors és:
Com cos 90° = 0, si els vectors són ortogonals, el seu producte escalar és nul.
El mòdul d'un vector es pot trobar com:
El mòdul correspon a la longitud del vector.
Com és la projecció escalar del vector sobre el vector , el producte escalar es pot entendre com el producte d'aquesta projecció per la longitud de .
Propietats del producte escalar
modificaEl producte escalar compleix les següents propietats si , , i són vectors reals i , i són escalars.[1][2]
que és una conseqüència de la definició ( és l'angle entre i ):[5]
La propietat associativa no té sentit pel producte escalar perquè l'operació és indefinida, ja que és un escalar.[6]
Malgrat tot, el producte escalar té la següent propietat:
El producte escalar és invariant a rotacions dels vectors.
Producte triple
modificaHi ha dues operacions ternàries que impliquen el producte escalar i el producte vectorial.
Es defineix el producte escalar triple (o producte mixt) de tres vectors com
El seu valor és el determinant de la matriu les columnes de les quals són les coordenades cartesianes dels tres vectors. És el volum amb signe del paral·lelepípede definit pels tres vectors, i és isomòrfic al cas particular tridimensional del producte exterior dels tres vectors.
El producte vectorial triple és definit com[1][2]
Aquesta identitat, també coneguda com la fórmula de Lagrange, es pot recordar com "ACB menys ABC", tenint en compte quins vectors es multipliquen primer. Aquesta fórmula té aplicacions en la simplificació de càlculs en física.
Generalitzacions
modificaVectors complexos
modificaPer vectors amb entrades complexes, utilitzar la definició prèvia del producte escalar donaria lloc a propietats certament diferents. Per exemple, el producte escalar d'un vector amb ell mateix podria ser zero sense que el vector fos el vector zero (per exemple, això passaria amb el vector ). Això, alhora tindria conseqüències en les nocions de longitud o d'angle. Propietats com la norma definida positiva poden salvaguardar-se a canvi de perdre les propietats de simetria i bilinealitat del producte escalar, a partir de les definicions alternatives[9][1]
on és el complex conjugat de . Quan es representen els vectors en format columna, es pot expressar el producte escalar com un producte matricial amb la transposada conjugada, denotada amb el superíndex H:
En el cas ed vectors amb components reals, aquesta definició és la mateixa que en el cas real. El producte escalar de qualsevol vector amb ell mateix és un nombre real no negatiu, i és diferent a zero excepte pel vector zero. Tanmateix, el producte escalar complex és sesquilineal en lloc de bilineal, ja que és lineal conjugat i no lineal en . El producte escalar no és simètric, ja que
L'angle entre dos vectors complexos ve donat per
El producte escalar complex dona lloc a les nocions de forma hermítica i espais prehilbertians generals, que s'utilitzen àmplicament en les matemàtiques i la física.
El producte escalar propi d'un vector complex , que inclou el transposat conjugat d'un vector fila, també rep el nom de norma al quadrat, , usant la norma euclidiana; és una generalització vectorial del quadrat absolut d'un escalar complex
Espais prehilbertians
modificaEl producte escalar es pot generalitzar a espais vectorials abstractes sobre el cos dels escalars, ja sigui el cos dels nombres reals o el cos dels nombres complexes . Normalment es denotan utilitzant claudàtors angulars .
El producte escalar de dos vectors sobre el cos dels nombres complexos és, en general, un nombre complex, i és sesquilineal en lloc de bilineal. Un espai prehilbert és un espai vectorial normat, i el producte esclar d'un vector amb ell mateix és real i definit positiu.
Funcions
modificaEs defineix el productes escalar per vectors que tenen un nombre finit d'entrades. Per tant, aquests vectors es poden considerar funcions discretes: un vector de longitud és, llavors, una funció amb domini , i és una notació per a la imatge de de la funció/vector .
Es pot generalitzar aquesta noció a funcions contínues: així com el producte escalar utilitza un sumatori en les components corresponents, el producte escalar en matrius es defineix com la integral en un cert interval [a, b]:[1]
Generalitzant encara més a funcions complexes i , en analogia amb el producte escalar definit més amunt, s'obté[1]
Funció ponderada
modificaEls productes escalars poden tenir una funció de pes (és a dir una funció que pondera cada terme del productes escalar amb un valor). Explícitament, el producte escalar de les funcions i respecte la funció de pes és
Diàdics i matrius
modificaUn producte escalar doble per matrius és el productes escalar de Frobenius, que és anàleg al producte escalar en vectors. Es defineix com la suma dels productes de les components corresponents de les dues matrius i de mateixa mida:
I per matrius reals,
Si s'ecriu una matriu com a diàdic, es pot definir un producte escalar doble diferent, tanmateix no és un producte escalar com a tal.
Tensors
modificaEl producte escalar entre un tensor d'ordre i un tensor d'ordre és un tensor d'ordre .
Referències
modifica- ↑ 1,0 1,1 1,2 1,3 1,4 1,5 S. Lipschutz; M. Lipson Linear Algebra (Schaum's Outlines). 4th. McGraw Hill, 2009. ISBN 978-0-07-154352-1.
- ↑ 2,0 2,1 2,2 M.R. Spiegel; S. Lipschutz; D. Spellman Vector Analysis (Schaum's Outlines). 2nd. McGraw Hill, 2009. ISBN 978-0-07-161545-7.
- ↑ A I Borisenko; I E Taparov Vector and tensor analysis with applications. Dover, 1968, p. 14.
- ↑ «Dot Product». [Consulta: 6 setembre 2020].
- ↑ Nykamp, Duane. «The dot product». [Consulta: 6 setembre 2020].
- ↑ Weisstein, Eric W. "Dot Product." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/DotProduct.html
- ↑ T. Banchoff; J. Wermer Linear Algebra Through Geometry. Springer Science & Business Media, 1983, p. 12. ISBN 978-1-4684-0161-5.
- ↑ A. Bedford; Wallace L. Fowler Engineering Mechanics: Statics. 5th. Prentice Hall, 2008, p. 60. ISBN 978-0-13-612915-8.
- ↑ Berberian, Sterling K. Linear Algebra. Dover, 2014, p. 287. ISBN 978-0-486-78055-9.
Vegeu també
modificaEnllaços externs
modifica- «Dot product» (en anglès). http://mathworld.wolfram.com/.+[Consulta: 19 novembre 2013].